File size: 2,427 Bytes
59c748e
 
49ebad1
f1495be
49ebad1
 
 
f1495be
59c748e
 
 
 
f1495be
59c748e
 
 
 
14c15c7
59c748e
 
 
f1495be
59c748e
94c7394
49ebad1
bfa893d
 
49ebad1
bfa893d
c4e1faf
bfa893d
49ebad1
80940eb
de600c4
49ebad1
 
 
 
bfa893d
 
49ebad1
 
bfa893d
49ebad1
 
de600c4
 
49ebad1
 
 
3c93956
49ebad1
de600c4
 
 
 
 
49ebad1
de600c4
 
49ebad1
de600c4
 
49ebad1
 
de600c4
49ebad1
 
 
 
 
 
 
4dc6bee
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# from PIL import Image
# from io import BytesIO
# from transformers import AutoImageProcessor, AutoModelForImageClassification

# # Load model
# processor = AutoImageProcessor.from_pretrained("taroii/pothole-detection-model")
# model = AutoModelForImageClassification.from_pretrained("taroii/pothole-detection-model")

# # Function to predict if an image contains a pothole
# def predict_pothole(image_url):
#     image = Image.open(BytesIO(image_url))
#     inputs = processor(images=image, return_tensors="pt")

#     # Perform inference
#     outputs = model(**inputs)
#     logits = outputs.logits
#     probabilities = logits.softmax(dim=1)
    
#     # Get predicted class (0: No pothole, 1: Pothole)
#     predicted_class = probabilities.argmax().item()
#     confidence = probabilities[0, predicted_class].item()

#     return predicted_class


import tensorflow as tf
from PIL import Image, ImageOps
import numpy as np
import requests
from io import BytesIO
from keras.models import load_model



def load_image_model(image):
    # Disable scientific notation for clarity
    np.set_printoptions(suppress=True)

    # Load the model from the URL
    model = load_model("keras_model.h5", compile=False)

    # Load the labels
    class_names = open("labels.txt", "r").readlines()

    # Create the array of the right shape to feed into the keras model
    # The 'length' or number of images you can put into the array is
    # determined by the first position in the shape tuple, in this case 1
    data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)

    # Replace this with the path to your image
    image = Image.open(BytesIO(image)).convert("RGB")

    # resizing the image to be at least 224x224 and then cropping from the center
    size = (224, 224)
    image = ImageOps.fit(image, size, Image.Resampling.LANCZOS)

    # turn the image into a numpy array
    image_array = np.asarray(image)

    # Normalize the image
    normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1

    # Load the image into the array
    data[0] = normalized_image_array

    # Predicts the model
    prediction = model.predict(data)
    index = np.argmax(prediction)
    class_name = class_names[index]
    confidence_score = prediction[0][index]

    # Print prediction and confidence score
    print("Class:", class_name[2:], end="")
    print("Confidence Score:", confidence_score)
    return class_name