Spaces:
Sleeping
Sleeping
Soham Chandratre
commited on
Commit
·
6750185
1
Parent(s):
59442d5
minor changes
Browse files
model/__pycache__/pothole_model.cpython-311.pyc
CHANGED
Binary files a/model/__pycache__/pothole_model.cpython-311.pyc and b/model/__pycache__/pothole_model.cpython-311.pyc differ
|
|
model/pothole_model.py
CHANGED
@@ -23,22 +23,30 @@
|
|
23 |
# return predicted_class
|
24 |
|
25 |
|
26 |
-
|
27 |
-
from
|
|
|
28 |
import numpy as np
|
29 |
-
from io import BytesIO
|
30 |
import requests
|
31 |
-
|
|
|
32 |
|
33 |
def load_image_model(image):
|
34 |
# Disable scientific notation for clarity
|
35 |
np.set_printoptions(suppress=True)
|
36 |
|
37 |
-
# Load the model
|
38 |
model_url = "https://huggingface.co/spaces/Soham0708/pothole_detect/blob/main/keras_model.h5"
|
39 |
response = requests.get(model_url)
|
40 |
response.raise_for_status() # Raise an exception if the download fails
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
# Load the labels
|
44 |
class_names = open("labels.txt", "r").readlines()
|
@@ -49,7 +57,7 @@ def load_image_model(image):
|
|
49 |
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
|
50 |
|
51 |
# Replace this with the path to your image
|
52 |
-
image = Image.open(
|
53 |
|
54 |
# resizing the image to be at least 224x224 and then cropping from the center
|
55 |
size = (224, 224)
|
@@ -74,3 +82,5 @@ def load_image_model(image):
|
|
74 |
print("Class:", class_name[2:], end="")
|
75 |
print("Confidence Score:", confidence_score)
|
76 |
|
|
|
|
|
|
23 |
# return predicted_class
|
24 |
|
25 |
|
26 |
+
|
27 |
+
from keras.models import load_model
|
28 |
+
from PIL import Image, ImageOps
|
29 |
import numpy as np
|
|
|
30 |
import requests
|
31 |
+
import tempfile
|
32 |
+
import os
|
33 |
|
34 |
def load_image_model(image):
|
35 |
# Disable scientific notation for clarity
|
36 |
np.set_printoptions(suppress=True)
|
37 |
|
38 |
+
# Load the model from the URL
|
39 |
model_url = "https://huggingface.co/spaces/Soham0708/pothole_detect/blob/main/keras_model.h5"
|
40 |
response = requests.get(model_url)
|
41 |
response.raise_for_status() # Raise an exception if the download fails
|
42 |
+
|
43 |
+
# Save the model to a temporary file
|
44 |
+
with tempfile.NamedTemporaryFile(suffix=".h5", delete=False) as tmp_file:
|
45 |
+
tmp_file.write(response.content)
|
46 |
+
tmp_file_path = tmp_file.name
|
47 |
+
|
48 |
+
# Load the model from the temporary file
|
49 |
+
model = load_model(tmp_file_path)
|
50 |
|
51 |
# Load the labels
|
52 |
class_names = open("labels.txt", "r").readlines()
|
|
|
57 |
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
|
58 |
|
59 |
# Replace this with the path to your image
|
60 |
+
image = Image.open(by(image)).convert("RGB")
|
61 |
|
62 |
# resizing the image to be at least 224x224 and then cropping from the center
|
63 |
size = (224, 224)
|
|
|
82 |
print("Class:", class_name[2:], end="")
|
83 |
print("Confidence Score:", confidence_score)
|
84 |
|
85 |
+
# Clean up temporary file
|
86 |
+
os.remove(tmp_file_path)
|