Soham Chandratre commited on
Commit
6750185
·
1 Parent(s): 59442d5

minor changes

Browse files
model/__pycache__/pothole_model.cpython-311.pyc CHANGED
Binary files a/model/__pycache__/pothole_model.cpython-311.pyc and b/model/__pycache__/pothole_model.cpython-311.pyc differ
 
model/pothole_model.py CHANGED
@@ -23,22 +23,30 @@
23
  # return predicted_class
24
 
25
 
26
- from keras.models import load_model # TensorFlow is required for Keras to work
27
- from PIL import Image, ImageOps # Install pillow instead of PIL
 
28
  import numpy as np
29
- from io import BytesIO
30
  import requests
31
-
 
32
 
33
  def load_image_model(image):
34
  # Disable scientific notation for clarity
35
  np.set_printoptions(suppress=True)
36
 
37
- # Load the model
38
  model_url = "https://huggingface.co/spaces/Soham0708/pothole_detect/blob/main/keras_model.h5"
39
  response = requests.get(model_url)
40
  response.raise_for_status() # Raise an exception if the download fails
41
- model = load_model(BytesIO(response.content))
 
 
 
 
 
 
 
42
 
43
  # Load the labels
44
  class_names = open("labels.txt", "r").readlines()
@@ -49,7 +57,7 @@ def load_image_model(image):
49
  data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
50
 
51
  # Replace this with the path to your image
52
- image = Image.open(BytesIO(image)).convert("RGB")
53
 
54
  # resizing the image to be at least 224x224 and then cropping from the center
55
  size = (224, 224)
@@ -74,3 +82,5 @@ def load_image_model(image):
74
  print("Class:", class_name[2:], end="")
75
  print("Confidence Score:", confidence_score)
76
 
 
 
 
23
  # return predicted_class
24
 
25
 
26
+
27
+ from keras.models import load_model
28
+ from PIL import Image, ImageOps
29
  import numpy as np
 
30
  import requests
31
+ import tempfile
32
+ import os
33
 
34
  def load_image_model(image):
35
  # Disable scientific notation for clarity
36
  np.set_printoptions(suppress=True)
37
 
38
+ # Load the model from the URL
39
  model_url = "https://huggingface.co/spaces/Soham0708/pothole_detect/blob/main/keras_model.h5"
40
  response = requests.get(model_url)
41
  response.raise_for_status() # Raise an exception if the download fails
42
+
43
+ # Save the model to a temporary file
44
+ with tempfile.NamedTemporaryFile(suffix=".h5", delete=False) as tmp_file:
45
+ tmp_file.write(response.content)
46
+ tmp_file_path = tmp_file.name
47
+
48
+ # Load the model from the temporary file
49
+ model = load_model(tmp_file_path)
50
 
51
  # Load the labels
52
  class_names = open("labels.txt", "r").readlines()
 
57
  data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
58
 
59
  # Replace this with the path to your image
60
+ image = Image.open(by(image)).convert("RGB")
61
 
62
  # resizing the image to be at least 224x224 and then cropping from the center
63
  size = (224, 224)
 
82
  print("Class:", class_name[2:], end="")
83
  print("Confidence Score:", confidence_score)
84
 
85
+ # Clean up temporary file
86
+ os.remove(tmp_file_path)