Soham Chandratre commited on
Commit
b388354
·
1 Parent(s): c4e1faf

minor changes

Browse files
model/__pycache__/pothole_model.cpython-311.pyc CHANGED
Binary files a/model/__pycache__/pothole_model.cpython-311.pyc and b/model/__pycache__/pothole_model.cpython-311.pyc differ
 
model/pothole_model.py CHANGED
@@ -34,39 +34,28 @@ def load_image_model(image):
34
  np.set_printoptions(suppress=True)
35
 
36
  # Load the model from the URL
37
- model_url = "https://huggingface.co/spaces/Soham0708/pothole_detect/blob/main/keras_model.h5"
38
- response = requests.get(model_url)
39
- response.raise_for_status() # Raise an exception if the download fails
40
- model_data = BytesIO(response.content)
41
 
42
- # Load the model from the in-memory bytes
43
- model = tf.keras.models.load_model(model_data)
44
 
45
  # Load the labels
46
  class_names = open("labels.txt", "r").readlines()
47
 
48
  # Create the array of the right shape to feed into the keras model
49
- # The 'length' or number of images you can put into the array is
50
- # determined by the first position in the shape tuple, in this case 1
51
  data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
52
 
53
  # Replace this with the path to your image
54
  image = Image.open(image).convert("RGB")
55
 
56
- # resizing the image to be at least 224x224 and then cropping from the center
57
- size = (224, 224)
58
- image = ImageOps.fit(image, size, Image.Resampling.LANCZOS)
59
-
60
- # turn the image into a numpy array
61
  image_array = np.asarray(image)
62
-
63
- # Normalize the image
64
  normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1
65
-
66
- # Load the image into the array
67
  data[0] = normalized_image_array
68
 
69
- # Predicts the model
70
  prediction = model.predict(data)
71
  index = np.argmax(prediction)
72
  class_name = class_names[index]
 
34
  np.set_printoptions(suppress=True)
35
 
36
  # Load the model from the URL
37
+ model_url = "https://huggingface.co/spaces/Soham0708/pothole_detect/resolve/main/keras_model.h5"
38
+ model_path = tf.keras.utils.get_file("keras_model.h5", model_url)
 
 
39
 
40
+ # Load the model
41
+ model = tf.keras.models.load_model(model_path)
42
 
43
  # Load the labels
44
  class_names = open("labels.txt", "r").readlines()
45
 
46
  # Create the array of the right shape to feed into the keras model
 
 
47
  data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
48
 
49
  # Replace this with the path to your image
50
  image = Image.open(image).convert("RGB")
51
 
52
+ # Resize and preprocess the image
53
+ image = ImageOps.fit(image, (224, 224), Image.ANTIALIAS)
 
 
 
54
  image_array = np.asarray(image)
 
 
55
  normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1
 
 
56
  data[0] = normalized_image_array
57
 
58
+ # Make prediction
59
  prediction = model.predict(data)
60
  index = np.argmax(prediction)
61
  class_name = class_names[index]