Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,59 @@
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
# import pandas as pd
|
4 |
-
|
5 |
# from streamlit_option_menu import option_menu
|
6 |
from bardapi import Bard
|
7 |
# from getvalues import getValues
|
8 |
-
|
9 |
# from transformers import pipeline, Conversation
|
10 |
|
11 |
st.set_page_config(layout="wide")
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
# classifyr = pipeline("zero-shot-classification")
|
14 |
|
15 |
# convo = pipeline("conversational")
|
@@ -19,13 +63,6 @@ st.set_page_config(layout="wide")
|
|
19 |
# uri = os.environ["MONGO_CONNECTION_STRING"]
|
20 |
# client = MongoClient(uri, tlsCertificateKeyFile="database/cert.pem")
|
21 |
|
22 |
-
# db = client["myapp"]
|
23 |
-
|
24 |
-
# col = db["reminders"]
|
25 |
-
|
26 |
-
bardkey = os.environ.get("BARD_API_KEY")
|
27 |
-
|
28 |
-
bard = Bard(token=bardkey)
|
29 |
|
30 |
# def view_rem():
|
31 |
# allrem = list(col.find())
|
@@ -33,38 +70,38 @@ bard = Bard(token=bardkey)
|
|
33 |
# st.dataframe(remdata)
|
34 |
|
35 |
|
36 |
-
def Chatbot():
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
|
61 |
-
|
62 |
|
63 |
-
|
64 |
|
65 |
|
66 |
|
67 |
-
Chatbot()
|
68 |
|
69 |
|
70 |
# def Create_Reminder():
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
# import pandas as pd
|
|
|
4 |
# from streamlit_option_menu import option_menu
|
5 |
from bardapi import Bard
|
6 |
# from getvalues import getValues
|
7 |
+
from pymongo import MongoClient
|
8 |
# from transformers import pipeline, Conversation
|
9 |
|
10 |
st.set_page_config(layout="wide")
|
11 |
|
12 |
+
|
13 |
+
|
14 |
+
#Mongo connection
|
15 |
+
url = os.environ["MONGO_CONNECTION_STRING"]
|
16 |
+
client = MongoClient(url,tlsCerificateKeyFile ="cert.pem")
|
17 |
+
|
18 |
+
#Fetch database
|
19 |
+
db = client["myapp"]
|
20 |
+
|
21 |
+
#Fetch collections
|
22 |
+
remcol = db["Reminders"]
|
23 |
+
usrcol = db["Users"]
|
24 |
+
notecol = db["Notes"]
|
25 |
+
|
26 |
+
#Connect with Bard
|
27 |
+
uri = os.environ["BARD_API_KEY"]
|
28 |
+
bard = Bard(token = uri )
|
29 |
+
|
30 |
+
#Store user bot chat messages
|
31 |
+
def chat_message(ques, ans):
|
32 |
+
chat = {
|
33 |
+
"user": ques,
|
34 |
+
"bot": ans
|
35 |
+
}
|
36 |
+
usrcol.insert_one(chat)
|
37 |
+
|
38 |
+
#Creating reminders from the described goal
|
39 |
+
def create_rem(ans):
|
40 |
+
remlist = bard.get_answer(f"Create a daily routine to achieve this goal below and make a list of reminders with values for reminder_message, time, repetition, days\n\nGoal = {ans}")
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
def Chatbot():
|
45 |
+
st.title("chatbot")
|
46 |
+
if query:= st.chat_input("Describe your goal"):
|
47 |
+
answer = bard.get_answer(query)
|
48 |
+
chat_message(query, answer)
|
49 |
+
create_rem(answer)
|
50 |
+
|
51 |
+
with st.chat_message("assistant"):
|
52 |
+
st.write(answer["content"])
|
53 |
+
|
54 |
+
|
55 |
+
Chatbot()
|
56 |
+
|
57 |
# classifyr = pipeline("zero-shot-classification")
|
58 |
|
59 |
# convo = pipeline("conversational")
|
|
|
63 |
# uri = os.environ["MONGO_CONNECTION_STRING"]
|
64 |
# client = MongoClient(uri, tlsCertificateKeyFile="database/cert.pem")
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
# def view_rem():
|
68 |
# allrem = list(col.find())
|
|
|
70 |
# st.dataframe(remdata)
|
71 |
|
72 |
|
73 |
+
# def Chatbot():
|
74 |
+
# st.title("Chatbot")
|
75 |
+
# if user_input := st.chat_input("Describe your goal. e.g: I want to achieve this goal in this time. Be as specific and explanatory as you can."):
|
76 |
+
# bardans = bard.get_answer(user_input)['content']
|
77 |
+
# anslist = bard.get_answer(f"Make a list of this answer: \n{bardans} \nfor this goal: \n{user_input}\n\nThe list should be in two section, section 1 for all the reminders to track called Daily Routine and section 2 for all information that should be consumed to achieve the goal and stay very focused and motivated with excitement and this section is called Notes")['content']
|
78 |
+
# listrem = bard.get_answer(f"Act as a ToDo Reminder AI who sets reminders or daily routine based upon the daily routine provided below:\n{anslist} \n\nMake a list of reminders with exact message, time, repetation frequecy, day/s kind of neccessary detail that would be required to set a reminder notification. Make it a numeric list.")['content']
|
79 |
+
# # result = classifyr(user_input,candidate_labels=["reminders", "notes"])
|
80 |
+
# with st.chat_message("assistant"):
|
81 |
+
# st.write(f"What to do to achive the goal:\n{bardans}\n\nHow to do it:\n{anslist}\n\nList of Reminders you should make:\n{listrem}")
|
82 |
+
|
83 |
+
# # with st.chat_message("user"):
|
84 |
+
# # st.write(result["labels"][0])
|
85 |
|
86 |
+
# # if ans["labels"][0] == "reminders":
|
87 |
+
# # values = getValues(query.lower())
|
88 |
+
# # with st.chat_message("assistant"):
|
89 |
+
# # st.write(values)
|
90 |
+
# # col.insert_one(values)
|
91 |
|
92 |
|
93 |
+
# # elif ans["labels"][0] == "general conversation":
|
94 |
+
# # umsg = bard.get_answer(query)["content"]
|
95 |
+
# # with st.chat_message("assistant"):
|
96 |
+
# # st.write(umsg)
|
97 |
|
98 |
+
# # elif ans["labels"][0] == "notes":
|
99 |
|
100 |
+
# # Notes = query.lower().replace( " create a new note", "",).replace(" no new note", "")
|
101 |
|
102 |
|
103 |
|
104 |
+
# Chatbot()
|
105 |
|
106 |
|
107 |
# def Create_Reminder():
|