Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
import json
|
4 |
+
|
5 |
+
def main():
|
6 |
+
|
7 |
+
st.title("FastAPI - Streamlit Integration")
|
8 |
+
|
9 |
+
# Эндпоинт для классификации текста
|
10 |
+
text_input = st.text_input("Enter text for classification:")
|
11 |
+
if st.button("Classify Text"):
|
12 |
+
response = requests.post("http://127.0.0.1:8000/clf_text", json={"text": text_input})
|
13 |
+
result = response.json()
|
14 |
+
st.success(f"Classification result: {result['prediction']}")
|
15 |
+
|
16 |
+
# Эндпоинт для классификации изображений
|
17 |
+
image_path = st.file_uploader("Upload an image for classification:", type=["jpg", "png"])
|
18 |
+
if image_path is not None:
|
19 |
+
if st.button("Classify Image"):
|
20 |
+
files = {"file": image_path.read()}
|
21 |
+
response = requests.post("http://127.0.0.1:8000/classify", files=files)
|
22 |
+
result = response.json()
|
23 |
+
st.success(f"Classification result: {result['prediction']}")
|
24 |
+
|
25 |
+
if __name__ == '__main__':
|
26 |
+
main()
|