Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import python_multipart
|
4 |
+
import os
|
5 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
6 |
+
from datasets import load_dataset, Audio
|
7 |
+
import numpy as np
|
8 |
+
from speechbrain.inference import EncoderClassifier
|
9 |
+
|
10 |
+
# Load models and processor
|
11 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
12 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("Solo448/SpeechT5-tuned-bn")
|
13 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
14 |
+
|
15 |
+
# Load speaker encoder
|
16 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
+
speaker_model = EncoderClassifier.from_hparams(
|
18 |
+
source="speechbrain/spkrec-xvect-voxceleb",
|
19 |
+
run_opts={"device": device},
|
20 |
+
savedir=os.path.join("/tmp", "speechbrain/spkrec-xvect-voxceleb")
|
21 |
+
)
|
22 |
+
|
23 |
+
# Load a sample from the dataset for speaker embedding
|
24 |
+
try:
|
25 |
+
dataset = load_dataset("ucalyptus/train-bn", split="train", trust_remote_code=True)
|
26 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
|
27 |
+
sample = dataset[0]
|
28 |
+
speaker_embedding = create_speaker_embedding(sample['audio']['array'])
|
29 |
+
except Exception as e:
|
30 |
+
print(f"Error loading dataset: {e}")
|
31 |
+
# Use a random speaker embedding as fallback
|
32 |
+
speaker_embedding = torch.randn(1, 512)
|
33 |
+
|
34 |
+
def create_speaker_embedding(waveform):
|
35 |
+
with torch.no_grad():
|
36 |
+
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform))
|
37 |
+
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
|
38 |
+
speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy()
|
39 |
+
return speaker_embeddings
|
40 |
+
|
41 |
+
def text_to_speech(text):
|
42 |
+
# Clean up text
|
43 |
+
replacements = [
|
44 |
+
("অ", "a"),
|
45 |
+
("আ", "aa"),
|
46 |
+
("ই", "i"),
|
47 |
+
("ঈ", "ee"),
|
48 |
+
("উ", "u"),
|
49 |
+
("ঊ", "oo"),
|
50 |
+
("ঋ", "ri"),
|
51 |
+
("এ", "e"),
|
52 |
+
("ঐ", "oi"),
|
53 |
+
("ও", "o"),
|
54 |
+
("ঔ", "ou"),
|
55 |
+
("ক", "k"),
|
56 |
+
("খ", "kh"),
|
57 |
+
("গ", "g"),
|
58 |
+
("ঘ", "gh"),
|
59 |
+
("ঙ", "ng"),
|
60 |
+
("চ", "ch"),
|
61 |
+
("ছ", "chh"),
|
62 |
+
("জ", "j"),
|
63 |
+
("ঝ", "jh"),
|
64 |
+
("ঞ", "nj"),
|
65 |
+
("ট", "t"),
|
66 |
+
("ঠ", "th"),
|
67 |
+
("ড", "d"),
|
68 |
+
("ঢ", "dh"),
|
69 |
+
("ণ", "nr"),
|
70 |
+
("ত", "t"),
|
71 |
+
("থ", "th"),
|
72 |
+
("দ", "d"),
|
73 |
+
("ধ", "dh"),
|
74 |
+
("ন", "n"),
|
75 |
+
("প", "p"),
|
76 |
+
("ফ", "ph"),
|
77 |
+
("ব", "b"),
|
78 |
+
("ভ", "bh"),
|
79 |
+
("ম", "m"),
|
80 |
+
("য", "ya"),
|
81 |
+
("র", "r"),
|
82 |
+
("ল", "l"),
|
83 |
+
("শ", "sha"),
|
84 |
+
("ষ", "sh"),
|
85 |
+
("স", "s"),
|
86 |
+
("হ", "ha"),
|
87 |
+
("ড়", "rh"),
|
88 |
+
("ঢ়", "rh"),
|
89 |
+
("য়", "y"),
|
90 |
+
("ৎ", "t"),
|
91 |
+
("ঃ", "h"),
|
92 |
+
("ঁ", "n"),
|
93 |
+
("়", ""),
|
94 |
+
("া", "a"),
|
95 |
+
("ি", "i"),
|
96 |
+
("ী", "ii"),
|
97 |
+
("ু", "u"),
|
98 |
+
("ূ", "uu"),
|
99 |
+
("ৃ", "r"),
|
100 |
+
("ে", "e"),
|
101 |
+
("ৈ", "oi"),
|
102 |
+
("ো", "o"),
|
103 |
+
("ৌ", "ou"),
|
104 |
+
("্", ""),
|
105 |
+
("ৎ", "t"),
|
106 |
+
("ৗ", "ou"),
|
107 |
+
("ড়", "r"),
|
108 |
+
("ঢ়", "r"),
|
109 |
+
("য়", "y"),
|
110 |
+
("ৰ", "r"),
|
111 |
+
("৵", "lee"),
|
112 |
+
("ং", "ng"),
|
113 |
+
("১", "1"),
|
114 |
+
("২", "2"),
|
115 |
+
("৩", "3"),
|
116 |
+
("৪", "4"),
|
117 |
+
("৫", "5"),
|
118 |
+
("৬", "6"),
|
119 |
+
("৭", "7"),
|
120 |
+
("৮", "8"),
|
121 |
+
("৯", "9"),
|
122 |
+
("০", "0")
|
123 |
+
]
|
124 |
+
for src, dst in replacements:
|
125 |
+
text = text.replace(src, dst)
|
126 |
+
|
127 |
+
inputs = processor(text=text, return_tensors="pt")
|
128 |
+
speech = model.generate_speech(inputs["input_ids"], speaker_embedding, vocoder=vocoder)
|
129 |
+
return (16000, speech.numpy())
|
130 |
+
|
131 |
+
iface = gr.Interface(
|
132 |
+
fn=text_to_speech,
|
133 |
+
inputs="text",
|
134 |
+
outputs="audio",
|
135 |
+
title="Bengali Text-to-Speech",
|
136 |
+
description="Enter bengali text to convert to speech"
|
137 |
+
)
|
138 |
+
|
139 |
+
iface.launch(share=True)
|