Ketengan-Diffusion-Lab's picture
Update app.py
225c3f2 verified
raw
history blame
2.17 kB
import gradio as gr
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import warnings
# disable some warnings
transformers.logging.set_verbosity_error()
transformers.logging.disable_progress_bar()
warnings.filterwarnings('ignore')
# Force CPU usage
device = torch.device("cpu")
torch.set_default_tensor_type(torch.FloatTensor)
model_name = 'cognitivecomputations/dolphin-vision-7b'
# create model and load it to CPU
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float32, # Use float32 for CPU
device_map={'': device},
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True
)
def inference(prompt, image):
messages = [
{"role": "user", "content": f'<image>\n{prompt}'}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
image_tensor = model.process_images([image], model.config)
# Add debug prints
print(f"Device of model: {next(model.parameters()).device}")
print(f"Device of input_ids: {input_ids.device}")
print(f"Device of image_tensor: {image_tensor.device}")
# generate
output_ids = model.generate(
input_ids,
images=image_tensor,
max_new_tokens=2048,
use_cache=True
)[0]
return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(label="Prompt", placeholder="Describe this image in detail")
image_input = gr.Image(label="Image", type="pil")
submit_button = gr.Button("Submit")
with gr.Column():
output_text = gr.Textbox(label="Output")
submit_button.click(fn=inference, inputs=[prompt_input, image_input], outputs=output_text)
demo.launch(share=True)