Ketengan-Diffusion-Lab commited on
Commit
cd44f8b
·
verified ·
1 Parent(s): 4f9f0e6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -10
app.py CHANGED
@@ -10,8 +10,8 @@ transformers.logging.set_verbosity_error()
10
  transformers.logging.disable_progress_bar()
11
  warnings.filterwarnings('ignore')
12
 
13
- # set device to a specific GPU (e.g., GPU 0)
14
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
15
 
16
  model_name = 'cognitivecomputations/dolphin-vision-7b'
17
 
@@ -19,9 +19,9 @@ model_name = 'cognitivecomputations/dolphin-vision-7b'
19
  model = AutoModelForCausalLM.from_pretrained(
20
  model_name,
21
  torch_dtype=torch.float16,
22
- # device_map='auto', # Remove auto device mapping
23
  trust_remote_code=True
24
- ).to(device) # Load the model to the specified device
25
 
26
  tokenizer = AutoTokenizer.from_pretrained(
27
  model_name,
@@ -39,15 +39,14 @@ def inference(prompt, image):
39
  )
40
 
41
  text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
42
- input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
43
 
 
44
 
45
- image_tensor = model.process_images([image], model.config).to(dtype=model.dtype, device=device)
46
-
47
- # Generate with autocast for mixed precision on the specified GPU
48
- with torch.cuda.amp.autocast():
49
  output_ids = model.generate(
50
- input_ids.to(device),
51
  images=image_tensor,
52
  max_new_tokens=2048,
53
  use_cache=True
 
10
  transformers.logging.disable_progress_bar()
11
  warnings.filterwarnings('ignore')
12
 
13
+ # set device
14
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15
 
16
  model_name = 'cognitivecomputations/dolphin-vision-7b'
17
 
 
19
  model = AutoModelForCausalLM.from_pretrained(
20
  model_name,
21
  torch_dtype=torch.float16,
22
+ device_map='auto', # Keep auto device mapping
23
  trust_remote_code=True
24
+ ).to(device) # Explicitly move the model to the device
25
 
26
  tokenizer = AutoTokenizer.from_pretrained(
27
  model_name,
 
39
  )
40
 
41
  text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
42
+ input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0).to(device) # Move input_ids to device
43
 
44
+ image_tensor = model.process_images([image], model.config).to(dtype=model.dtype, device=device) # Move image_tensor to device
45
 
46
+ # generate
47
+ with torch.cuda.amp.autocast(): # Use autocast for mixed precision
 
 
48
  output_ids = model.generate(
49
+ input_ids,
50
  images=image_tensor,
51
  max_new_tokens=2048,
52
  use_cache=True