import gradio as gr import torch import transformers from transformers import AutoModelForCausalLM, AutoTokenizer from PIL import Image import warnings # disable some warnings transformers.logging.set_verbosity_error() transformers.logging.disable_progress_bar() warnings.filterwarnings('ignore') # Set device to GPU if available, else CPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") model_name = 'cognitivecomputations/dolphin-vision-72b' # create model and load it to the specified device model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto", # This will automatically use the GPU if available trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained( model_name, trust_remote_code=True ) def inference(prompt, image): messages = [ {"role": "user", "content": f'\n{prompt}'} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('')] input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0).to(device) image_tensor = model.process_images([image], model.config).to(device) # Add debug prints print(f"Device of model: {next(model.parameters()).device}") print(f"Device of input_ids: {input_ids.device}") print(f"Device of image_tensor: {image_tensor.device}") # generate with torch.cuda.amp.autocast(): output_ids = model.generate( input_ids, images=image_tensor, max_new_tokens=1024, use_cache=True )[0] return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip() with gr.Blocks() as demo: with gr.Row(): with gr.Column(): prompt_input = gr.Textbox(label="Prompt", placeholder="Describe this image in detail") image_input = gr.Image(label="Image", type="pil") submit_button = gr.Button("Submit") with gr.Column(): output_text = gr.Textbox(label="Output") submit_button.click(fn=inference, inputs=[prompt_input, image_input], outputs=output_text) demo.launch(share=True)