Solshine commited on
Commit
468efae
·
verified ·
1 Parent(s): 911fa42
Files changed (1) hide show
  1. app.py +71 -106
app.py CHANGED
@@ -1,133 +1,98 @@
1
  import gradio as gr
2
-
3
- # This may be in the wrong spot
4
- def generate_outputs(user_prompt):
5
- report, recommendations, visualization = produce_outputs(combined_data)
6
- return report, recommendations, visualization
7
-
8
  from langchain_openai import TextProcessingAgent
9
  from dspy.agents import Agent # Base class for custom agent
10
  from dspy.utils import spawn_processes # Distributed computing utility
 
11
 
12
- # API key **ADD A KEY OR LOCAL LLM PATHWAY**
13
- openai = OpenAI(api_key="KEY")
14
-
15
 
16
- # User prompt intake was here but was folded into Gradio interface lines
 
17
 
 
 
 
18
 
19
- # Synthetic data generation (using Langchain's Text-Davinci-003 model for illustration)
20
- def generate_synthetic_data(prompt):
21
- response = openai.complete(prompt=prompt, engine="text-davinci-003", max_tokens=100)
22
- return response.choices[0].text
23
 
 
 
24
 
25
- # Custom data processing agent (inheriting from DSPy's Agent class) [TONIC PLEASE HELP LOL]
26
- class DataProcessingAgent(Agent):
27
- def __init__(self):
28
- super().__init__()
29
 
30
- def process(self, data):
31
- # Implement our custom data processing logic here (e.g., feature engineering)
32
- processed_data = data.lower().strip()
33
- return processed_data
34
 
 
 
 
 
 
35
 
36
- # Dynamic team composition (replace with logic for dynamic team creation)
37
- team = [
38
- OpenAI(api_key="YOUR_OPENAI_API_KEY", engine="text-davinci-003"), # LLM agent
39
- DataProcessingAgent(), # Custom data processing agent
40
- ]
 
 
 
41
 
 
 
42
 
43
- # Prompt and data flow refinement
44
- message = f"{user_prompt}\n{generate_synthetic_data(f'Simulate scenarios for {user_prompt}')}"
 
45
 
46
- # Agents Group Chat Finite State Machine
47
- class GroupChatFSM:
48
- def __init__(self, teams_config):
49
- """
50
- Initialize with configurations for teams.
51
- """
52
- self.teams = {team_name: self.Team(team_agents) for team_name, team_agents in teams_config.items()}
53
- self.states = ["waiting", "interacting", "finalizing"]
54
- self.current_state = "waiting"
55
 
56
- def transition(self, to_state):
57
- """
58
- Transition the state of the group chat based on FSM rules.
59
- """
60
- if to_state in self.states:
61
- self.current_state = to_state
62
- else:
63
- raise ValueError("Invalid state transition attempted.")
64
 
65
- def broadcast(self, message):
66
- """
67
- Broadcast a message to all teams based on the current FSM state.
68
- """
69
- if self.current_state == "interacting":
70
- responses = {team_name: team.broadcast(message) for team_name, team in self.teams.items()}
71
- return responses
72
- else:
73
- return "The group chat is not in an interacting state."
74
 
75
- class Team:
76
- def __init__(self, agents_config):
77
- self.agents = [self.Agent(agent_config) for agent_config in agents_config]
78
 
79
- def broadcast(self, message):
80
- responses = [agent.respond(message) for agent in self.agents]
81
- return responses
82
-
83
- class Agent:
84
- def __init__(self, config):
85
- self.agent_name = config['agent_name']
86
- self.api_key = config['api_key']
87
- self.model = config['model']
88
-
89
- def respond(self, message):
90
- return f"{self.agent_name} responding with {self.model}"
91
 
92
- # Multimedia output production (using Langchain's Text-Davinci-003 as default) because I don't know how to implement DSPy properly yet [TONIC PLEASE HELP LOL]
93
- def produce_outputs(processed_data):
94
- # Use Langchain for LLM-based analysis, recommendations, etc. Should this be updated to DSPy too? again:[TONIC PLEASE HELP LOL]
95
- analysis = openai.complete(prompt=f"Analyze {processed_data}", engine="text-davinci-003", max_tokens=200)
96
- recommendations = openai.complete(prompt=f"Recommend strategies based on {processed_data}", engine="text-davinci-003", max_tokens=100)
97
- # Replace with your visualization logic
98
- visualization = None
99
- return analysis.choices[0].text, recommendations.choices[0].text, visualization
100
 
 
 
101
 
102
- # Synth data generation using DSPy's distributed computing capabilities (taken partially from DSPY documentation)
103
- def generate_synthetic_data_distributed(prompt, num_nodes=3):
104
- # Spawn synthetic data generation processes across multiple nodes
105
- processes = [spawn_processes(generate_synthetic_data, [f"Simulate scenarios for {prompt}"]) for _ in range(num_nodes)]
106
 
107
- # Collect the results from each node
108
- synthetic_data_list = []
109
- for process in processes:
110
- synthetic_data_list.extend(process.get())
111
 
112
- # Combine the results and return the synthetic data
113
- return "\n".join(synthetic_data_list)
114
 
 
115
 
116
- # Generate synthetic data using DSPy's distributed computing capabilities. Again:[TONIC PLEASE HELP LOL]
117
- synthetic_data = generate_synthetic_data_distributed(user_prompt)
118
-
119
-
120
- # Generate outputs
121
- report, recommendations, visualization = produce_outputs(combined_data)
122
-
123
-
124
- # Print the results for testing pyrposes
125
- print("Report:")
126
- print(report)
127
- print("\nRecommendations:")
128
- print(recommendations)
129
- print("\nVisualization:")
130
- print(visualization) # Currently "None" due to placeholder 'visualization'
131
-
132
- # Moved from other gradio chunk near the top
133
- gr.Interface(fn=generate_outputs, inputs=user_prompt, outputs=["text", "text", "image"]).launch()
 
1
  import gradio as gr
 
 
 
 
 
 
2
  from langchain_openai import TextProcessingAgent
3
  from dspy.agents import Agent # Base class for custom agent
4
  from dspy.utils import spawn_processes # Distributed computing utility
5
+ from transformers import pipeline
6
 
7
+ # Choose model
8
+ model_name = "Dolphin-Phi"
 
9
 
10
+ # Load the chosen LLM model
11
+ llm = pipeline("text-generation", model=Dolphin-Phi)
12
 
13
+ # DSPy-based prompt generation
14
+ from dspy.agents import Agent
15
+ from dspy.utils import SentenceSplitter, SentimentAnalyzer, NamedEntityRecognizer
16
 
17
+ def dspy_generate_agent_prompts(prompt):
18
+ """
19
+ Generates prompts for different agents based on the provided prompt and DSPy functionalities.
 
20
 
21
+ Args:
22
+ prompt (str): The user-provided prompt (e.g., customer reviews).
23
 
24
+ Returns:
25
+ list: A list containing agent-specific prompts.
26
+ """
 
27
 
28
+ # 1. Split the prompt into individual sentences
29
+ sentences = SentenceSplitter().process(prompt)
 
 
30
 
31
+ # 2. Analyze sentiment for each sentence
32
+ sentiment_analyzer = SentimentAnalyzer()
33
+ sentiment_labels = []
34
+ for sentence in sentences:
35
+ sentiment_labels.append(sentiment_analyzer.analyze(sentence))
36
 
37
+ # 3. Extract named entities related to specific topics
38
+ ner = NamedEntityRecognizer(model_name="en_core_web_sm")
39
+ extracted_entities = {}
40
+ for sentence in sentences:
41
+ entities = ner.process(sentence)
42
+ for entity in entities:
43
+ if entity.label_ in ["FOOD", "ORG", "LOCATION"]: # Customize entity labels based on your needs
44
+ extracted_entities.setdefault(entity.label_, []).append(entity.text)
45
 
46
+ # 4. Craft prompts for each agent
47
+ agent_prompts = []
48
 
49
+ # **Sentiment Analyzer Prompt:**
50
+ sentiment_prompt = f"Analyze the sentiment of the following sentences:\n" + "\n".join(sentences)
51
+ agent_prompts.append(sentiment_prompt)
52
 
53
+ # **Topic Extractor Prompt:** (Modify based on your specific topics)
54
+ topic_prompt = f"Extract the main topics discussed in the following text, focusing on food, service, and ambiance:\n{prompt}"
55
+ agent_prompts.append(topic_prompt)
 
 
 
 
 
 
56
 
57
+ # **Recommendation Generator Prompt:** (Modify based on your requirements)
58
+ positive_count = sum(label == "POSITIVE" for label in sentiment_labels)
59
+ negative_count = sum(label == "NEGATIVE" for label in sentiment_labels)
60
+ neutral_count = sum(label == "NEUTRAL" for label in sentiment_labels)
61
+ topic_mentions = "\n".join(f"{k}: {','.join(v)}" for k, v in extracted_entities.items())
 
 
 
62
 
63
+ recommendation_prompt = f"""Based on the sentiment analysis (positive: {positive_count}, negative: {negative_count}, neutral: {neutral_count}) and extracted topics ({topic_mentions}), suggest recommendations for the restaurant to improve."""
64
+ agent_prompts.append(recommendation_prompt)
 
 
 
 
 
 
 
65
 
66
+ return agent_prompts
 
 
67
 
68
+ # Define the main function to be used with Gradio
69
+ def generate_outputs(user_prompt):
70
+ # 1. Process prompt with langchain (replace with your actual implementation)
71
+ processed_prompt = langchain_function(user_prompt) # Replace with your langchain logic
 
 
 
 
 
 
 
 
72
 
73
+ # 2. Generate synthetic data using DSPy's distributed computing capabilities
74
+ synthetic_data = generate_synthetic_data_distributed(processed_prompt)
 
 
 
 
 
 
75
 
76
+ # 3. Combine user prompt and synthetic data
77
+ combined_data = f"{user_prompt}\n{synthetic_data}"
78
 
79
+ # 4. Generate prompts for agents using DSPy
80
+ agent_prompts = dspy_generate_agent_prompts(processed_prompt)
 
 
81
 
82
+ # 5. Use the chosen LLM for two of the prompts
83
+ output_1 = llm(agent_prompts[0], max_length=100)[0]["generated_text"]
84
+ output_2 = llm(agent_prompts[1], max_length=100)[0]["generated_text"]
 
85
 
86
+ # 6. Produce outputs with Langchain or DSPy (replace with your actual implementation)
87
+ report, recommendations, visualization = produce_outputs(combined_data)
88
 
89
+ return report, recommendations, visualization
90
 
91
+ # Create the Gradio interface
92
+ gr.Interface(
93
+ fn=generate_outputs,
94
+ inputs=gr.Textbox(label="Enter a prompt"),
95
+ outputs=["textbox", "textbox", "image"],
96
+ title="Multi-Agent Prompt Processor",
97
+ description="Processes a prompt using Langchain, DSPy, and a chosen Hugging Face LLM to generate diverse outputs.",
98
+ ).launch()