File size: 13,931 Bytes
fb79cf3 7dc7203 d7c5e54 fb79cf3 d7c5e54 0aba972 d7c5e54 582f303 d7c5e54 fb79cf3 ed36d82 d06aee8 e507847 fb79cf3 d7c5e54 fb79cf3 d7c5e54 fb79cf3 d7c5e54 fb79cf3 d7c5e54 f7f7d8c d7c5e54 f7f7d8c d7c5e54 f7f7d8c 526fda1 f7f7d8c 526fda1 f7f7d8c d7c5e54 46017ae d7c5e54 46017ae f7f7d8c 582f303 eb371b5 582f303 ed36d82 582f303 ed36d82 582f303 d7410d1 7ab03bd 582f303 7ab03bd 582f303 d7c5e54 582f303 46017ae 582f303 ed36d82 582f303 7c18ca4 582f303 7c18ca4 582f303 ed36d82 7c18ca4 582f303 7c18ca4 582f303 7c18ca4 582f303 7c18ca4 582f303 ed36d82 7c18ca4 582f303 fb79cf3 b6072e3 d7c5e54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
import gradio as gr
import spaces
from huggingface_hub import login
import accelerate
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
import os
import torch
from typing import Optional, Iterator, Dict, Any, List
from threading import Thread
from types import NoneType
import traceback
# Initialize logging and device information
print(f"Is CUDA available: {torch.cuda.is_available()}")
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
MAX_NEW_TOKENS = 2**13
DEFAULT_MAX_NEW_TOKENS = 0.65*MAX_NEW_TOKENS
DEFAULT_SYSTEM_PROMPT = """
Tu es un expert en extraction de données dans des documents très longs et bruités.
Tu comprends le sujet grâce à des liens sémantiques que tu peux extraire.
Tu sers à créer des concepts hiérarchiques ainsi que des liens entre ceux-ci.
Réponds de manière claire et formelle et va droit au but dans ta tâche.
"""
class HuggingFaceLogin:
"""Handles authentication to the Hugging Face Hub using environment variables or explicit tokens."""
def __init__(self, env_token_key: str = "HF_TOKEN"):
"""Initialize the login handler.
Args:
env_token_key (str): Environment variable key containing the token. Defaults to "HF_TOKEN".
"""
self.token = os.getenv(env_token_key)
def login(self, token: str = None) -> bool:
"""Authenticate with the Hugging Face Hub.
Args:
token (Optional[str]): Optional explicit token. If not provided, uses token from environment.
Returns:
bool: True if login successful, False otherwise.
Raises:
ValueError: If no token is available (neither in env nor passed explicitly).
"""
if not self.token:
raise ValueError("No authentication token provided. Set HF_TOKEN environment variable or pass token explicitly.")
try:
print("Logging in to the Hugging Face Hub...")
login(token=self.token)
return True
except Exception as e:
print(f"Login failed: {str(e)}")
return False
model_config_4bit = BitsAndBytesConfig(
load_in_4bit = True,
bnb_4bit_use_double_quant = True,
bnb_4bit_quant_type = "nf4",
bnb_4bit_compute_dtype=torch.float16
)
model_config_8bit = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_8bit_compute_dtype=torch.float16
)
if torch.cuda.is_available():
model_id = "meta-llama/Llama-3.1-8B-Instruct"
model = AutoModelForCausalLM.from_pretrained(model_id,
quantization_config=model_config_8bit,
device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Helper function to generate responses from the LLM
def generate_llm_response(
conversation: List[Dict[str, str]],
max_new_tokens: int,
temperature: float,
top_p: float,
top_k: int,
repetition_penalty: float
) -> str:
"""Generate a response from the LLM based on the conversation."""
input_ids = tokenizer.apply_chat_template(
conversation,
return_tensors="pt",
add_generation_prompt=True
)
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(
tokenizer,
timeout=2*60.0,
skip_prompt=True,
skip_special_tokens=True
)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
pad_token_id=tokenizer.eos_token_id,
)
t = Thread(
target=model.generate,
kwargs=generate_kwargs
)
t.start()
# Collect the output
accumulated_response = ""
for text in streamer:
accumulated_response += text
yield accumulated_response
def append_text_knowledge(file_path: str) -> str:
"""
Reads content from a selected file and returns it as a string.
Args:
file_path (str): Path to the selected file
Returns:
str: Content of the file or empty string if no file selected
"""
if file_path:
try:
with open(file_path, "r", encoding="utf-8") as f:
return f.read()
except Exception as e:
print("Error reading file: {e}")
return ""
return ""
knowledge_textbox = gr.Textbox(
label="Knowledge Text",
lines= 20,
visible=False
)
with gr.Blocks() as demo:
gr.Markdown("# Ontology Generation with Chain-of-Thought")
chatbot = gr.Chatbot(type="messages")
message_input = gr.Textbox(
label="message",
placeholder="Ask about the elicitation text...",
lines=2,
submit_btn=True
)
with gr.Row():
file_explorer = gr.FileExplorer(
glob="**/*.txt",
file_count="single",
label="Upload file",
show_label=True
)
knowledge_input = gr.Textbox(
label="Knowledge text",
lines=6,
visible=True
)
with gr.Accordion("Advanced Settings", open=False):
system_prompt_input = gr.Textbox(
label="System Prompt",
lines=4,
value=DEFAULT_SYSTEM_PROMPT
)
with gr.Row():
with gr.Column():
max_tokens_slider = gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS
)
temperature_slider = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.2
)
with gr.Column():
top_p_slider = gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.8
)
top_k_slider = gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50
)
repetition_penalty_slider = gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.0
)
# Example prompts
examples = gr.Examples(
examples=[
["Extract meaningful entities in your knowledge document in order to create a Turtle-formatted output where you create classes and sub-classes and object properties automatically."],
["Make a simple list of the classes, sub-classes and object properties that can be extracted from the knowledge document."]
],
inputs=message_input
)
def user_message(message:str, history:List[Dict[str, str]]):
"""Add user message to chat history.
Args:
message (str): The User Message to send
history (List[Dict[str,str]]): The previous chat conversation history.
"""
if message.strip() == "":
return history, message
history = history + [{"role":"user", "content": message}]
return history, ""
def bot_response(history, knowledge, system_prompt, max_tokens, temp, top_p, top_k, rep_penalty):
"""Generate assistant response with visible thinking.
Args:
history (List[Dict[str, str]]): The previous chat conversation history
knowledge (Any): Documents to pass as knowledge to the multimodal model
system_prompt (str): System prompt that the model follows
max_tokens (int): Max number of allowed output tokens
temp (float): Model's Temperature
top_p (int): Model's Top p value
top_k (int): Model's Top k value
rep_penalty (float): Model's repetition penalty
Returns:
history (List[Dict[str, str]]): The history of the conversation updated
"""
try:
if not history or history[-1]["role"] != "user":
return history
user_message = history[-1]["content"]
# thinking message with pending status
history.append({
"role": "assistant",
"content": "Je réfléchis étape par étape...",
"metadata": {
"title": "Réflexion",
"status": "pending"
}
})
yield history
thinking_conversation = []
if system_prompt:
thinking_conversation.append({"role": "system", "content": system_prompt})
if knowledge:
thinking_conversation.append({
"role": "assistant",
"content": f"Voici le document que je dois comprendre: {knowledge}\n\nJe vais l'analyser étape par étape."
})
for msg in history[:-2]: # All msg except user message and thinking part
thinking_conversation.append(msg)
thinking_prompt = user_message + "\n\nRéfléchis étape par étape. D'abord identifie l'intention de l'utilisateur. Quand tu as compris ce qui t'est demandé, commence à établir un plan clair et précis que tu peux suivre. Utilise l'italic et le gras en Markdown pour séquencer et prioriser tes actions."
thinking_conversation.append({"role": "user", "content": thinking_prompt})
# GENERATE THINKING
for thinking_partial in generate_llm_response(thinking_conversation,
max_new_tokens=max_tokens * 2,
temperature=temp,
top_p=top_p,
top_k=top_k,
repetition_penalty=rep_penalty):
# update the thinking message
history[-1] = {
"role": "assistant",
"content": thinking_partial,
"metadata": {
"title": "Réflexion",
"status": "done"
}
}
yield history
history[-1]["metadata"]["status"] = "done"
yield history
print("DEBUG:\t\tYielded history of ```thinking_result```")
final_conversation = []
if system_prompt:
final_conversation.append({"role": "system", "content": system_prompt})
if knowledge:
final_conversation.append({
"role": "assistant",
"content": f"J'ai analysé ce document: {knowledge}"
})
for msg in history[:-1]: # exclude thinking
if "metadata" not in msg or "title" not in msg.get("metadata", {}):
final_conversation.append(msg)
final_conversation.append({
"role": "assistant",
"content": f"Voici mon analyse étape par étape:\n{history[-1]['content']}\n\nMaintenant je vais formaliser le résultat final."
})
final_conversation.append({
"role": "assistant",
"content": "Je formule ma réponse finale..."
})
yield history
for final_partial in generate_llm_response(final_conversation,
max_new_tokens=max_tokens,
temperature=temp * 0.8, # Lower temperature for final answer
top_p=top_p,
top_k=top_k,
repetition_penalty=rep_penalty):
history[-1]["content"] = final_partial
yield history
print("DEBUG:\t\tYielded history of ```final_answer```")
except Exception as e:
error_traceback = traceback.format_exc()
print(f"Error traceback:\n{error_traceback}")
history.append({
"role": "assistant",
"content": f"An error occurred: {str(e)}\n\nTraceback details:\n{error_traceback}"
})
yield history
file_explorer.change(
append_text_knowledge,
file_explorer,
knowledge_input
)
message_input.submit(
user_message,
inputs=[message_input, chatbot],
outputs=[chatbot, message_input]
).then(
bot_response,
inputs=[
chatbot,
knowledge_input,
system_prompt_input,
max_tokens_slider,
temperature_slider,
top_p_slider,
top_k_slider,
repetition_penalty_slider
],
outputs=chatbot
)
if __name__ == "__main__":
auth = HuggingFaceLogin()
if auth.login():
print("Login successful!")
demo.queue().launch()
|