Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,195 +8,156 @@ from langchain_huggingface import HuggingFaceEndpoint
|
|
8 |
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader
|
9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
# Constants
|
16 |
DATA_PATH = "data/"
|
17 |
DB_FAISS_PATH = "vectorstore/db_faiss"
|
18 |
-
HUGGINGFACE_REPO_ID = "mistralai/Mistral-7B-Instruct-v0.3"
|
19 |
-
HF_TOKEN = os.environ.get("HF_TOKEN")
|
20 |
-
|
21 |
-
# Custom prompt template
|
22 |
-
CUSTOM_PROMPT_TEMPLATE = """
|
23 |
-
Use the pieces of information provided in the context to answer user's question.
|
24 |
-
If you dont know the answer, just say that you dont know, dont try to make up an answer.
|
25 |
-
|
26 |
-
Dont provide anything out of the given context
|
27 |
-
|
28 |
-
Context: {context}
|
29 |
-
Question: {question}
|
30 |
-
|
31 |
-
Start the answer directly. No small talk please.
|
32 |
-
"""
|
33 |
|
34 |
def load_pdf_files(data_path):
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
except Exception as e:
|
42 |
-
st.error(f"Error loading PDF files: {e}")
|
43 |
-
return []
|
44 |
|
45 |
def create_chunks(extracted_data):
|
|
|
46 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500,
|
47 |
chunk_overlap=50)
|
48 |
text_chunks = text_splitter.split_documents(extracted_data)
|
49 |
return text_chunks
|
50 |
|
51 |
def get_embedding_model():
|
|
|
52 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
53 |
return embedding_model
|
54 |
|
55 |
-
def
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
|
61 |
-
|
62 |
-
if not documents:
|
63 |
-
st.warning("No PDF files found in data directory. Please upload some PDFs.")
|
64 |
-
return None
|
65 |
-
|
66 |
-
st.info(f"Loaded {len(documents)} PDF pages")
|
67 |
text_chunks = create_chunks(extracted_data=documents)
|
68 |
st.info(f"Created {len(text_chunks)} text chunks")
|
69 |
|
|
|
70 |
embedding_model = get_embedding_model()
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
db = FAISS.from_documents(text_chunks, embedding_model)
|
76 |
db.save_local(DB_FAISS_PATH)
|
77 |
-
st.success(
|
78 |
return db
|
79 |
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
def get_vectorstore():
|
|
|
82 |
if os.path.exists(DB_FAISS_PATH):
|
83 |
-
|
|
|
84 |
try:
|
85 |
db = FAISS.load_local(DB_FAISS_PATH, embedding_model, allow_dangerous_deserialization=True)
|
86 |
return db
|
87 |
except Exception as e:
|
88 |
st.error(f"Error loading vector store: {e}")
|
89 |
-
|
|
|
90 |
else:
|
91 |
-
st.
|
92 |
-
return
|
93 |
-
|
94 |
-
def set_custom_prompt():
|
95 |
-
prompt = PromptTemplate(template=CUSTOM_PROMPT_TEMPLATE, input_variables=["context", "question"])
|
96 |
-
return prompt
|
97 |
-
|
98 |
-
def load_llm():
|
99 |
-
if not HF_TOKEN:
|
100 |
-
st.error("HF_TOKEN not found. Please set it in your environment variables.")
|
101 |
-
return None
|
102 |
-
|
103 |
-
try:
|
104 |
-
llm = HuggingFaceEndpoint(
|
105 |
-
repo_id=HUGGINGFACE_REPO_ID,
|
106 |
-
task="text-generation",
|
107 |
-
temperature=0.5,
|
108 |
-
model_kwargs={
|
109 |
-
"token": HF_TOKEN,
|
110 |
-
"max_length": 512
|
111 |
-
}
|
112 |
-
)
|
113 |
-
return llm
|
114 |
-
except Exception as e:
|
115 |
-
st.error(f"Error loading LLM: {e}")
|
116 |
-
return None
|
117 |
-
|
118 |
-
def upload_pdf():
|
119 |
-
uploaded_files = st.file_uploader("Upload PDF files", type="pdf", accept_multiple_files=True)
|
120 |
-
if uploaded_files:
|
121 |
-
for uploaded_file in uploaded_files:
|
122 |
-
with open(os.path.join(DATA_PATH, uploaded_file.name), "wb") as f:
|
123 |
-
f.write(uploaded_file.getbuffer())
|
124 |
-
st.success(f"Uploaded {len(uploaded_files)} files to {DATA_PATH}")
|
125 |
-
return True
|
126 |
-
return False
|
127 |
|
128 |
def main():
|
129 |
-
st.title("
|
|
|
130 |
|
131 |
-
#
|
132 |
-
st.
|
133 |
-
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
st.
|
138 |
-
if upload_pdf():
|
139 |
-
st.info("Now go to 'Create Vector Store' to process your documents")
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
st.info("This will process your PDF files and create embeddings")
|
144 |
-
if st.button("Create Vector Store"):
|
145 |
-
with st.spinner("Processing documents..."):
|
146 |
-
create_vectorstore()
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
-
|
160 |
-
st.
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
except Exception as e:
|
198 |
-
st.error(f"Error: {str(e)}")
|
199 |
-
st.error("Please check your HuggingFace token and model access permissions")
|
200 |
|
201 |
if __name__ == "__main__":
|
202 |
main()
|
|
|
8 |
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader
|
9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
|
11 |
+
# Use environment variable for Hugging Face token
|
12 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
13 |
+
HUGGINGFACE_REPO_ID = "mistralai/Mistral-7B-Instruct-v0.3"
|
|
|
|
|
14 |
DATA_PATH = "data/"
|
15 |
DB_FAISS_PATH = "vectorstore/db_faiss"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def load_pdf_files(data_path):
|
18 |
+
"""Load PDF files from the specified directory"""
|
19 |
+
loader = DirectoryLoader(data_path,
|
20 |
+
glob='*.pdf',
|
21 |
+
loader_cls=PyPDFLoader)
|
22 |
+
documents = loader.load()
|
23 |
+
return documents
|
|
|
|
|
|
|
24 |
|
25 |
def create_chunks(extracted_data):
|
26 |
+
"""Split documents into chunks"""
|
27 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500,
|
28 |
chunk_overlap=50)
|
29 |
text_chunks = text_splitter.split_documents(extracted_data)
|
30 |
return text_chunks
|
31 |
|
32 |
def get_embedding_model():
|
33 |
+
"""Get the embedding model"""
|
34 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
35 |
return embedding_model
|
36 |
|
37 |
+
def create_embeddings():
|
38 |
+
"""Create embeddings and save to FAISS database"""
|
39 |
+
# Step 1: Load PDFs
|
40 |
+
documents = load_pdf_files(data_path=DATA_PATH)
|
41 |
+
st.info(f"Loaded {len(documents)} documents")
|
42 |
|
43 |
+
# Step 2: Create chunks
|
|
|
|
|
|
|
|
|
|
|
44 |
text_chunks = create_chunks(extracted_data=documents)
|
45 |
st.info(f"Created {len(text_chunks)} text chunks")
|
46 |
|
47 |
+
# Step 3: Get embedding model
|
48 |
embedding_model = get_embedding_model()
|
49 |
|
50 |
+
# Step 4: Create and save embeddings
|
51 |
+
os.makedirs(os.path.dirname(DB_FAISS_PATH), exist_ok=True)
|
|
|
52 |
db = FAISS.from_documents(text_chunks, embedding_model)
|
53 |
db.save_local(DB_FAISS_PATH)
|
54 |
+
st.success("Embeddings created and saved successfully!")
|
55 |
return db
|
56 |
|
57 |
+
def set_custom_prompt(custom_prompt_template):
|
58 |
+
"""Set custom prompt template"""
|
59 |
+
prompt = PromptTemplate(template=custom_prompt_template, input_variables=["context", "question"])
|
60 |
+
return prompt
|
61 |
+
|
62 |
+
def load_llm(huggingface_repo_id):
|
63 |
+
"""Load Hugging Face LLM"""
|
64 |
+
llm = HuggingFaceEndpoint(
|
65 |
+
repo_id=huggingface_repo_id,
|
66 |
+
task="text-generation",
|
67 |
+
temperature=0.5,
|
68 |
+
model_kwargs={
|
69 |
+
"token": HF_TOKEN,
|
70 |
+
"max_length": 512
|
71 |
+
}
|
72 |
+
)
|
73 |
+
return llm
|
74 |
+
|
75 |
def get_vectorstore():
|
76 |
+
"""Get or create vector store"""
|
77 |
if os.path.exists(DB_FAISS_PATH):
|
78 |
+
st.info("Loading existing vector store...")
|
79 |
+
embedding_model = get_embedding_model()
|
80 |
try:
|
81 |
db = FAISS.load_local(DB_FAISS_PATH, embedding_model, allow_dangerous_deserialization=True)
|
82 |
return db
|
83 |
except Exception as e:
|
84 |
st.error(f"Error loading vector store: {e}")
|
85 |
+
st.info("Creating new vector store...")
|
86 |
+
return create_embeddings()
|
87 |
else:
|
88 |
+
st.info("Creating new vector store...")
|
89 |
+
return create_embeddings()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
def main():
|
92 |
+
st.title("BeepKart FAQ Chatbot")
|
93 |
+
st.markdown("Ask questions about buying or selling bikes on BeepKart!")
|
94 |
|
95 |
+
# Initialize session state for messages
|
96 |
+
if 'messages' not in st.session_state:
|
97 |
+
st.session_state.messages = []
|
98 |
|
99 |
+
# Display chat history
|
100 |
+
for message in st.session_state.messages:
|
101 |
+
st.chat_message(message['role']).markdown(message['content'])
|
|
|
|
|
102 |
|
103 |
+
# Get user input
|
104 |
+
prompt = st.chat_input("Ask a question about BeepKart...")
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
# Custom prompt template
|
107 |
+
CUSTOM_PROMPT_TEMPLATE = """
|
108 |
+
Use the pieces of information provided in the context to answer user's question.
|
109 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
110 |
+
|
111 |
+
Don't provide anything out of the given context
|
112 |
+
|
113 |
+
Context: {context}
|
114 |
+
Question: {question}
|
115 |
+
|
116 |
+
Start the answer directly. No small talk please.
|
117 |
+
"""
|
118 |
+
|
119 |
+
if prompt:
|
120 |
+
# Display user message
|
121 |
+
st.chat_message('user').markdown(prompt)
|
122 |
+
st.session_state.messages.append({'role': 'user', 'content': prompt})
|
123 |
|
124 |
+
try:
|
125 |
+
with st.spinner("Thinking..."):
|
126 |
+
# Get vector store
|
127 |
+
vectorstore = get_vectorstore()
|
128 |
+
|
129 |
+
# Create QA chain
|
130 |
+
qa_chain = RetrievalQA.from_chain_type(
|
131 |
+
llm=load_llm(huggingface_repo_id=HUGGINGFACE_REPO_ID),
|
132 |
+
chain_type="stuff",
|
133 |
+
retriever=vectorstore.as_retriever(search_kwargs={'k': 3}),
|
134 |
+
return_source_documents=True,
|
135 |
+
chain_type_kwargs={'prompt': set_custom_prompt(CUSTOM_PROMPT_TEMPLATE)}
|
136 |
+
)
|
137 |
+
|
138 |
+
# Get response
|
139 |
+
response = qa_chain.invoke({'query': prompt})
|
140 |
+
|
141 |
+
# Extract result and sources
|
142 |
+
result = response["result"]
|
143 |
+
source_documents = response["source_documents"]
|
144 |
+
|
145 |
+
# Format source documents
|
146 |
+
source_docs_text = "\n\n**Sources:**\n"
|
147 |
+
for i, doc in enumerate(source_documents, 1):
|
148 |
+
source_docs_text += f"{i}. Page {doc.metadata.get('page', 'N/A')}: {doc.page_content[:100]}...\n\n"
|
149 |
+
|
150 |
+
# Display result and sources
|
151 |
+
result_to_show = f"{result}\n{source_docs_text}"
|
152 |
+
|
153 |
+
st.chat_message('assistant').markdown(result_to_show)
|
154 |
+
st.session_state.messages.append({'role': 'assistant', 'content': result_to_show})
|
155 |
+
|
156 |
+
except Exception as e:
|
157 |
+
error_message = f"Error: {str(e)}"
|
158 |
+
st.error(error_message)
|
159 |
+
st.error("Please check your HuggingFace token and model access permissions")
|
160 |
+
st.session_state.messages.append({'role': 'assistant', 'content': error_message})
|
|
|
|
|
|
|
|
|
161 |
|
162 |
if __name__ == "__main__":
|
163 |
main()
|