Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
4 |
+
from langchain.chains import RetrievalQA
|
5 |
+
from langchain_community.vectorstores import FAISS
|
6 |
+
from langchain_core.prompts import PromptTemplate
|
7 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
8 |
+
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader
|
9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
+
|
11 |
+
# Load environment variables
|
12 |
+
from dotenv import load_dotenv, find_dotenv
|
13 |
+
load_dotenv(find_dotenv())
|
14 |
+
|
15 |
+
# Constants
|
16 |
+
DATA_PATH = "data/"
|
17 |
+
DB_FAISS_PATH = "vectorstore/db_faiss"
|
18 |
+
HUGGINGFACE_REPO_ID = "mistralai/Mistral-7B-Instruct-v0.3"
|
19 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
20 |
+
|
21 |
+
# Custom prompt template
|
22 |
+
CUSTOM_PROMPT_TEMPLATE = """
|
23 |
+
Use the pieces of information provided in the context to answer user's question.
|
24 |
+
If you dont know the answer, just say that you dont know, dont try to make up an answer.
|
25 |
+
|
26 |
+
Dont provide anything out of the given context
|
27 |
+
|
28 |
+
Context: {context}
|
29 |
+
Question: {question}
|
30 |
+
|
31 |
+
Start the answer directly. No small talk please.
|
32 |
+
"""
|
33 |
+
|
34 |
+
def load_pdf_files(data_path):
|
35 |
+
try:
|
36 |
+
loader = DirectoryLoader(data_path,
|
37 |
+
glob='*.pdf',
|
38 |
+
loader_cls=PyPDFLoader)
|
39 |
+
documents = loader.load()
|
40 |
+
return documents
|
41 |
+
except Exception as e:
|
42 |
+
st.error(f"Error loading PDF files: {e}")
|
43 |
+
return []
|
44 |
+
|
45 |
+
def create_chunks(extracted_data):
|
46 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500,
|
47 |
+
chunk_overlap=50)
|
48 |
+
text_chunks = text_splitter.split_documents(extracted_data)
|
49 |
+
return text_chunks
|
50 |
+
|
51 |
+
def get_embedding_model():
|
52 |
+
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
53 |
+
return embedding_model
|
54 |
+
|
55 |
+
def create_vectorstore():
|
56 |
+
if not os.path.exists(DATA_PATH):
|
57 |
+
os.makedirs(DATA_PATH)
|
58 |
+
st.warning(f"Created empty data directory at {DATA_PATH}. Please upload PDF files.")
|
59 |
+
return None
|
60 |
+
|
61 |
+
documents = load_pdf_files(data=DATA_PATH)
|
62 |
+
if not documents:
|
63 |
+
st.warning("No PDF files found in data directory. Please upload some PDFs.")
|
64 |
+
return None
|
65 |
+
|
66 |
+
st.info(f"Loaded {len(documents)} PDF pages")
|
67 |
+
text_chunks = create_chunks(extracted_data=documents)
|
68 |
+
st.info(f"Created {len(text_chunks)} text chunks")
|
69 |
+
|
70 |
+
embedding_model = get_embedding_model()
|
71 |
+
|
72 |
+
if not os.path.exists(os.path.dirname(DB_FAISS_PATH)):
|
73 |
+
os.makedirs(os.path.dirname(DB_FAISS_PATH))
|
74 |
+
|
75 |
+
db = FAISS.from_documents(text_chunks, embedding_model)
|
76 |
+
db.save_local(DB_FAISS_PATH)
|
77 |
+
st.success(f"Created vector store at {DB_FAISS_PATH}")
|
78 |
+
return db
|
79 |
+
|
80 |
+
@st.cache_resource
|
81 |
+
def get_vectorstore():
|
82 |
+
if os.path.exists(DB_FAISS_PATH):
|
83 |
+
embedding_model = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')
|
84 |
+
try:
|
85 |
+
db = FAISS.load_local(DB_FAISS_PATH, embedding_model, allow_dangerous_deserialization=True)
|
86 |
+
return db
|
87 |
+
except Exception as e:
|
88 |
+
st.error(f"Error loading vector store: {e}")
|
89 |
+
return None
|
90 |
+
else:
|
91 |
+
st.warning("Vector store not found. Please create it first.")
|
92 |
+
return None
|
93 |
+
|
94 |
+
def set_custom_prompt():
|
95 |
+
prompt = PromptTemplate(template=CUSTOM_PROMPT_TEMPLATE, input_variables=["context", "question"])
|
96 |
+
return prompt
|
97 |
+
|
98 |
+
def load_llm():
|
99 |
+
if not HF_TOKEN:
|
100 |
+
st.error("HF_TOKEN not found. Please set it in your environment variables.")
|
101 |
+
return None
|
102 |
+
|
103 |
+
try:
|
104 |
+
llm = HuggingFaceEndpoint(
|
105 |
+
repo_id=HUGGINGFACE_REPO_ID,
|
106 |
+
task="text-generation",
|
107 |
+
temperature=0.5,
|
108 |
+
model_kwargs={
|
109 |
+
"token": HF_TOKEN,
|
110 |
+
"max_length": 512
|
111 |
+
}
|
112 |
+
)
|
113 |
+
return llm
|
114 |
+
except Exception as e:
|
115 |
+
st.error(f"Error loading LLM: {e}")
|
116 |
+
return None
|
117 |
+
|
118 |
+
def upload_pdf():
|
119 |
+
uploaded_files = st.file_uploader("Upload PDF files", type="pdf", accept_multiple_files=True)
|
120 |
+
if uploaded_files:
|
121 |
+
for uploaded_file in uploaded_files:
|
122 |
+
with open(os.path.join(DATA_PATH, uploaded_file.name), "wb") as f:
|
123 |
+
f.write(uploaded_file.getbuffer())
|
124 |
+
st.success(f"Uploaded {len(uploaded_files)} files to {DATA_PATH}")
|
125 |
+
return True
|
126 |
+
return False
|
127 |
+
|
128 |
+
def main():
|
129 |
+
st.title("PDF Question Answering System")
|
130 |
+
|
131 |
+
# Sidebar
|
132 |
+
st.sidebar.title("Settings")
|
133 |
+
page = st.sidebar.radio("Choose an action", ["Upload PDFs", "Create Vector Store", "Chat with Documents"])
|
134 |
+
|
135 |
+
if page == "Upload PDFs":
|
136 |
+
st.header("Upload PDF Files")
|
137 |
+
st.info("Upload PDF files that will be used for question answering")
|
138 |
+
if upload_pdf():
|
139 |
+
st.info("Now go to 'Create Vector Store' to process your documents")
|
140 |
+
|
141 |
+
elif page == "Create Vector Store":
|
142 |
+
st.header("Create Vector Store")
|
143 |
+
st.info("This will process your PDF files and create embeddings")
|
144 |
+
if st.button("Create Vector Store"):
|
145 |
+
with st.spinner("Processing documents..."):
|
146 |
+
create_vectorstore()
|
147 |
+
|
148 |
+
elif page == "Chat with Documents":
|
149 |
+
st.header("Ask Questions About Your Documents")
|
150 |
+
|
151 |
+
if 'messages' not in st.session_state:
|
152 |
+
st.session_state.messages = []
|
153 |
+
|
154 |
+
for message in st.session_state.messages:
|
155 |
+
st.chat_message(message['role']).markdown(message['content'])
|
156 |
+
|
157 |
+
prompt = st.chat_input("Ask a question about your documents")
|
158 |
+
|
159 |
+
if prompt:
|
160 |
+
st.chat_message('user').markdown(prompt)
|
161 |
+
st.session_state.messages.append({'role': 'user', 'content': prompt})
|
162 |
+
|
163 |
+
vectorstore = get_vectorstore()
|
164 |
+
if vectorstore is None:
|
165 |
+
st.error("Vector store not available. Please create it first.")
|
166 |
+
return
|
167 |
+
|
168 |
+
llm = load_llm()
|
169 |
+
if llm is None:
|
170 |
+
return
|
171 |
+
|
172 |
+
try:
|
173 |
+
with st.spinner("Thinking..."):
|
174 |
+
qa_chain = RetrievalQA.from_chain_type(
|
175 |
+
llm=llm,
|
176 |
+
chain_type="stuff",
|
177 |
+
retriever=vectorstore.as_retriever(search_kwargs={'k': 3}),
|
178 |
+
return_source_documents=True,
|
179 |
+
chain_type_kwargs={'prompt': set_custom_prompt()}
|
180 |
+
)
|
181 |
+
|
182 |
+
response = qa_chain.invoke({'query': prompt})
|
183 |
+
|
184 |
+
result = response["result"]
|
185 |
+
source_documents = response["source_documents"]
|
186 |
+
|
187 |
+
# Format source documents more cleanly
|
188 |
+
source_docs_text = "\n\n**Source Documents:**\n"
|
189 |
+
for i, doc in enumerate(source_documents, 1):
|
190 |
+
source_docs_text += f"{i}. Page {doc.metadata.get('page', 'N/A')}: {doc.page_content[:200]}...\n\n"
|
191 |
+
|
192 |
+
result_to_show = f"{result}\n{source_docs_text}"
|
193 |
+
|
194 |
+
st.chat_message('assistant').markdown(result_to_show)
|
195 |
+
st.session_state.messages.append({'role': 'assistant', 'content': result_to_show})
|
196 |
+
|
197 |
+
except Exception as e:
|
198 |
+
st.error(f"Error: {str(e)}")
|
199 |
+
st.error("Please check your HuggingFace token and model access permissions")
|
200 |
+
|
201 |
+
if __name__ == "__main__":
|
202 |
+
main()
|