File size: 19,986 Bytes
badd206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import streamlit as st
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px
import numpy as np
import xgboost as xgb
import os
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

# Set page configuration at the very top
st.set_page_config(page_title="Healthcare Dashboard", layout="wide", page_icon="πŸ’‘")

# Define human-readable labels for prediction outcomes 
OUTCOME_MAP = {
    0: "Patient recovered and went home",
    1: "Transferred to another hospital or care center",
    2: "Transferred to a rehab center",
    3: "Left the hospital early without approval",
    4: "Passed away or had a very serious event",
}

# Function to load the model
def load_model():
    try:
        model = xgb.XGBClassifier()
        model.load_model("xgboost_patient_model.json")
        return model
    except Exception as e:
        st.error(f"Error loading model: {e}")
        return None

# Ensure data matches model's feature requirements
def preprocess_data(data, model_features):
    try:
        data = data.apply(pd.to_numeric, errors='coerce')
        missing_features = [f for f in model_features if f not in data.columns]
        extra_features = [f for f in data.columns if f not in model_features]
        
        if missing_features:
            st.error(f"❌ Missing required features: {missing_features}")
            return None
        if extra_features:
            st.warning(f"⚠️ Extra features in uploaded data: {extra_features}")
        
        return data[model_features]
    except Exception as e:
        st.error(f"Data preprocessing error: {e}")
        return None

# Predict patient outcomes
def predict_outcome(model, data):
    if model is None:
        return None, None, None, None
    
    actual_target = data.pop("target") if "target" in data.columns else None
    
    try:
        model_features = model.get_booster().feature_names
        data = preprocess_data(data, model_features)
        if data is None:
            return None, None, None, None
            
        predictions = model.predict(data)
        
        # Convert numerical predictions to human-readable labels
        mapped_predictions = [OUTCOME_MAP[pred] for pred in predictions]
        actual_labels = [OUTCOME_MAP[actual] for actual in actual_target] if actual_target is not None else ["N/A"] * len(predictions)
        
        # Debugging information
        if actual_target is not None:
            correct_predictions = (predictions == actual_target).sum()
            total_predictions = len(actual_target)
            accuracy = (correct_predictions / total_predictions) * 100
            st.write(f"βœ… Correct Predictions: {correct_predictions}/{total_predictions}")
            st.write(f"πŸ“Š Model Accuracy: **{accuracy:.2f}%**")
        
        return actual_target, predictions, mapped_predictions, actual_labels
    except Exception as e:
        st.error(f"Prediction error: {e}")
        return None, None, None, None

# Load the data
file_path = 'final_cleaned_patient_data.csv'
try:
    df = pd.read_csv(file_path)
except Exception as e:
    st.error(f"Error loading data: {e}")
    df = pd.DataFrame()  # Create empty DataFrame if file doesn't exist

# Sidebar navigation
st.sidebar.title('Healthcare Data Dashboard')

# Team Members Section
st.sidebar.markdown("### πŸ† Team Members:")
team_members = [
    "1. R. Sai Somnath",
    "2. S. Sreevardhan", 
    "3. S. Mohammad Basha", 
    "4. V. Hussain Basha", 
    "5. P. Charles"
]
for member in team_members:
    st.sidebar.text(member)

# Add a divider
st.sidebar.markdown("---")

# Section navigation - Added two new sections
option = st.sidebar.selectbox('Choose a section', [
    'Data Overview', 
    'Data Visualization', 
    'Interactive Reports', 
    'Correlation Analysis', 
    'Data Insights', 
    'Patient Outcome Prediction', 
    'Batch Prediction', 
    'Model Performance'
])

# Apply a Streamlit theme with a dark background for a modern look
st.markdown("""
    <style>
        h1 { color: #00FFAA; }
        .stApp { background-color: #121212; color: #FFFFFF; }
        .sidebar .sidebar-content { background-color: #333333; color: #FFFFFF; }
        .css-1d391kg { color: #FFFFFF; }
        .css-18e3th9 { background-color: #1E1E1E; }
    </style>
""", unsafe_allow_html=True)

# Data Overview Section
if option == 'Data Overview':
    st.title('πŸ“Š Data Overview')
    st.write(df.head())
    st.write(f"Dataset Shape: {df.shape}")
    st.write(f"Column Names: {df.columns.tolist()}")
    st.write("Basic Statistical Overview:")
    st.write(df.describe())

    if st.checkbox('Show Missing Values'): 
        st.write(df.isnull().sum())

# Data Visualization Section
elif option == 'Data Visualization':
    st.title('πŸ“ˆ Data Visualization')
    column = st.selectbox('Select Column for Visualization', df.columns)
    plot_type = st.radio('Choose plot type', ['Histogram', 'Boxplot', 'Violin Plot', 'Scatter Plot', 'Line Plot', 'Animated Plot'])

    if plot_type == 'Animated Plot':
        time_col = st.selectbox('Select Time Column (if applicable)', df.columns)
        fig = px.scatter(df, x=column, y=column, animation_frame=time_col, size_max=60)
    elif plot_type == 'Histogram':
        fig = px.histogram(df, x=column, marginal='box', nbins=30)
    elif plot_type == 'Boxplot':
        fig = px.box(df, y=column)
    elif plot_type == 'Violin Plot':
        fig = px.violin(df, y=column, box=True, points='all')
    elif plot_type == 'Scatter Plot':
        x_col = st.selectbox('Select X axis', df.columns)
        fig = px.scatter(df, x=x_col, y=column, color=column)
    elif plot_type == 'Line Plot':
        x_col = st.selectbox('Select X axis for Line Plot', df.columns)
        fig = px.line(df, x=x_col, y=column)
    
    st.plotly_chart(fig)

# Correlation Analysis Section
elif option == 'Correlation Analysis':
    st.title('πŸ”Ž Correlation Analysis')
    corr_matrix = df.corr()
    fig, ax = plt.subplots(figsize=(12, 8))
    sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f', ax=ax)
    st.pyplot(fig)

# Interactive Reports Section
elif option == 'Interactive Reports':
    st.title('πŸ“‚ Interactive Reports')
    st.write("Filter and explore the data.")
    selected_columns = st.multiselect('Select columns to display', df.columns)
    st.dataframe(df[selected_columns] if selected_columns else df)

    st.write("Filter the Data:")
    filter_column = st.selectbox('Select column to filter by', df.columns)
    filter_value = st.text_input('Enter filter value')
    if filter_value:
        filtered_data = df[df[filter_column].astype(str).str.contains(filter_value, case=False)]
        st.write(filtered_data)
        
        # Download option
        csv_data = filtered_data.to_csv(index=False).encode('utf-8')
        st.download_button(label='Download Filtered Data as CSV', data=csv_data, file_name='filtered_data.csv', mime='text/csv')

# Data Insights Section
elif option == 'Data Insights':
    st.title('🧠 Data Insights')
    st.write("Gain insights into the data using various metrics.")
    st.write("Total Unique Values per Column:")
    st.write(df.nunique())
    
    st.write("Top 5 Frequent Values for Each Column:")
    for col in df.columns:
        st.write(f"{col}: {df[col].value_counts().head(5)}")

# Patient Outcome Prediction Section
elif option == 'Patient Outcome Prediction':
    st.title('πŸ€– Patient Outcome Prediction')
    
    # Load the pre-trained model
    model = load_model()
    
    if model is not None:
        st.success("βœ… Pre-trained model loaded successfully!")
        
        # Define class descriptions
        class_descriptions = {
            0: "Patient recovered and went home",
            1: "Patient transferred to another hospital",
            2: "Patient moved to rehab facility",
            3: "Patient left against medical advice",
            4: "Patient deceased or serious outcome"
        }
        
        # Display target class distribution if target column exists
        target_column = 'target'
        if target_column in df.columns:
            st.subheader("Target Class Distribution")
            target_counts = df[target_column].value_counts().reset_index()
            target_counts.columns = ['Class', 'Count']
            target_counts['Description'] = target_counts['Class'].map(class_descriptions)
            st.write(target_counts)
            
            fig = px.pie(target_counts, values='Count', names='Description', title='Target Class Distribution')
            st.plotly_chart(fig)
        
        # Prediction interface
        st.subheader("Make Predictions")
        st.write("Enter values for the features to predict the patient outcome:")
        
        # Create a more interactive UI for prediction with all input values
        col1, col2, col3 = st.columns(3)
        
        # Create input fields for all required features
        input_values = {}
        
        with col1:
            input_values['age'] = st.number_input("Age", min_value=0, max_value=120, value=51)
            input_values['gender'] = st.selectbox("Gender", [0, 1], index=1, format_func=lambda x: "Male" if x == 0 else "Female")
            input_values['previous_hospitalizations'] = st.number_input("Previous Hospitalizations", min_value=0, value=4)
            input_values['heart_rate'] = st.number_input("Heart Rate", min_value=30, max_value=200, value=63)
            input_values['respiratory_rate'] = st.number_input("Respiratory Rate", min_value=5, max_value=60, value=16)
            input_values['blood_pressure_sys'] = st.number_input("Blood Pressure (Systolic)", min_value=50, max_value=250, value=86)
            input_values['blood_pressure_dia'] = st.number_input("Blood Pressure (Diastolic)", min_value=30, max_value=150, value=58)
            input_values['temperature'] = st.number_input("Temperature (Β°C)", min_value=35.0, max_value=42.0, value=35.86, step=0.1)
            input_values['wbc_count'] = st.number_input("WBC Count", min_value=0.0, max_value=50.0, value=7.15, step=0.1)
            input_values['creatinine'] = st.number_input("Creatinine", min_value=0.1, max_value=10.0, value=2.93, step=0.1)

        with col2:
            input_values['bilirubin'] = st.number_input("Bilirubin", min_value=0.1, max_value=30.0, value=1.72, step=0.1)
            input_values['glucose'] = st.number_input("Glucose", min_value=40, max_value=500, value=137)
            input_values['bun'] = st.number_input("BUN", min_value=5, max_value=150, value=36)
            input_values['pH'] = st.number_input("pH", min_value=6.8, max_value=7.8, value=7.34, step=0.01)
            input_values['pao2'] = st.number_input("PaO2", min_value=40, max_value=300, value=72)
            input_values['pco2'] = st.number_input("PCO2", min_value=20, max_value=100, value=58)
            input_values['fio2'] = st.number_input("FiO2", min_value=0.21, max_value=1.0, value=0.88, step=0.01)
            input_values['gcs'] = st.slider("GCS Score", 3, 15, 5)
            input_values['comorbidity_index'] = st.slider("Comorbidity Index", 0, 10, 1)
            input_values['admission_source'] = st.selectbox("Admission Source", [0, 1, 2, 3], index=1, format_func=lambda x: ["Emergency", "OPD", "Transfer", "Other"][x])

        with col3:
            input_values['elective_surgery'] = st.selectbox("Elective Surgery", [0, 1], index=1, format_func=lambda x: "No" if x == 0 else "Yes")
            input_values['num_medications'] = st.number_input("Number of Medications", min_value=0, value=18)
            input_values['charlson_comorbidity_index'] = st.slider("Charlson Comorbidity Index", 0, 15, 1)
            input_values['ews_score'] = st.slider("EWS Score", 0, 20, 7)
            input_values['severity_score'] = st.slider("Severity Score", 0, 10, 4)
            input_values['bed_occupancy_rate'] = st.slider("Bed Occupancy Rate (%)", 50, 100, int(68.67))
            input_values['staff_to_patient_ratio'] = st.slider("Staff to Patient Ratio", 0.1, 2.0, 0.99, step=0.1)
            input_values['past_icu_admissions'] = st.number_input("Past ICU Admissions", min_value=0, value=2)
            input_values['previous_surgery'] = st.selectbox("Previous Surgery", [0, 1], index=1, format_func=lambda x: "No" if x == 0 else "Yes")
            input_values['high_risk_treatment'] = st.selectbox("High Risk Treatment", [0, 1], index=1, format_func=lambda x: "No" if x == 0 else "Yes")
            input_values['discharge_support'] = st.selectbox("Discharge Support", [0, 1], index=0, format_func=lambda x: "No" if x == 0 else "Yes")

        
        if st.button("Predict Outcome"):
            # Define input columns (must match your model's expected input features)
            input_columns = [
                'age', 'gender', 'previous_hospitalizations', 'heart_rate',
                'respiratory_rate', 'blood_pressure_sys', 'blood_pressure_dia',
                'temperature', 'wbc_count', 'creatinine', 'bilirubin', 'glucose', 'bun',
                'pH', 'pao2', 'pco2', 'fio2', 'gcs', 'comorbidity_index',
                'admission_source', 'elective_surgery', 'num_medications',
                'charlson_comorbidity_index', 'ews_score', 'severity_score',
                'bed_occupancy_rate', 'staff_to_patient_ratio', 'past_icu_admissions',
                'previous_surgery', 'high_risk_treatment', 'discharge_support'
            ]
            
            # Create a sample input for prediction (using a template from your dataset)
            if len(df) > 0:
                sample_input = pd.DataFrame([{col: 0 for col in input_columns}])
                
                # Update with user inputs
                for feature, value in input_values.items():
                    if feature in sample_input.columns:
                        sample_input[feature] = value
                
                # Make prediction
                try:
                    prediction = model.predict(sample_input)[0]
                    prediction_proba = model.predict_proba(sample_input)[0]
                    
                    # Display prediction
                    st.subheader("Prediction Result")
                    st.write(f"Predicted Class: {prediction} - {class_descriptions.get(prediction, 'Unknown')}")
                    
                    # Display probability for each class
                    st.write("Prediction Probabilities:")
                    proba_df = pd.DataFrame({
                        'Class': [class_descriptions.get(i, f"Class {i}") for i in range(len(prediction_proba))],
                        'Probability': prediction_proba
                    })
                    fig = px.bar(proba_df, x='Class', y='Probability', title='Prediction Probabilities')
                    st.plotly_chart(fig)
                except Exception as e:
                    st.error(f"Error making prediction: {e}")
            else:
                st.error("Dataset is empty, cannot create input template.")
    else:
        st.error("Failed to load model. Please check if 'xgboost_patient_model.json' exists in the current directory.")

# NEW SECTION 1: Batch Prediction
elif option == 'Batch Prediction':
    st.title("πŸ₯ Batch Patient Outcome Prediction")
    st.write("Upload a CSV file with patient data to predict outcomes for multiple patients at once.")
  
    uploaded_file = st.file_uploader("πŸ“‚ Upload CSV file", type=["csv"])
  
    if uploaded_file is not None:
        batch_df = pd.read_csv(uploaded_file)
        batch_df = batch_df.dropna().reset_index(drop=True)
        
        st.write("## Preview of Uploaded Data")
        st.dataframe(batch_df.head(), use_container_width=True)
        
        model = load_model()
        actual_target, predicted_classes, predicted_outcomes, actual_outcomes = predict_outcome(model, batch_df.copy())
        
        if predicted_classes is not None:
            st.write("## πŸ₯ Prediction Results")
            result_df = pd.DataFrame({
                "Patient ID": range(1, len(predicted_classes) + 1),
                "Actual Class": actual_target if actual_target is not None else ["N/A"] * len(predicted_classes),
                "Predicted Class": predicted_classes,
                "Predicted Outcome": predicted_outcomes
            })
            st.dataframe(result_df, use_container_width=True)
            
            # Add visualization of batch prediction results
            st.write("## Prediction Distribution")
            results_count = pd.Series(predicted_outcomes).value_counts().reset_index()
            results_count.columns = ['Predicted Outcome', 'Count']
            fig = px.pie(results_count, values='Count', names='Predicted Outcome', 
                         title='Distribution of Predicted Outcomes')
            st.plotly_chart(fig)
            
            # Offer download of results
            csv_results = result_df.to_csv(index=False).encode('utf-8')
            st.download_button(
                label="Download Prediction Results",
                data=csv_results,
                file_name="patient_predictions.csv",
                mime="text/csv"
            )

# NEW SECTION 2: Model Performance
elif option == 'Model Performance':
    st.title("πŸ“Š Model Performance Analysis")
    
    # Check if data exists and contains target variable
    if len(df) > 0 and 'target' in df.columns:
        st.write("Analyze the model's performance on the dataset.")
        
        # Split data into features and target
        X = df.drop(columns=["target"])  # Features
        y = df["target"]  # Target
        
        # Split data for testing
        X_train, X_test, y_train, y_test = train_test_split(
            X, y, test_size=0.2, random_state=42, stratify=y
        )
        
       
        
        # Load the model
        model = load_model()
        
        if model is not None:
            # Make predictions
            try:
                y_pred = model.predict(X_test)
                y_prob = model.predict_proba(X_test)
                
                # Calculate metrics
                accuracy = accuracy_score(y_test, y_pred)
                conf_matrix = confusion_matrix(y_test, y_pred)
                class_report = classification_report(y_test, y_pred, output_dict=True)
                
                # Display metrics
                col1, col2 = st.columns(2)
                
                with col1:
                    st.metric("Model Accuracy", f"{accuracy:.2%}")
                    
                    # Plot confusion matrix
                    st.write("### Confusion Matrix")
                    fig, ax = plt.subplots(figsize=(10, 8))
                    sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', ax=ax)
                    ax.set_xlabel('Predicted Labels')
                    ax.set_ylabel('True Labels')
                    st.pyplot(fig)
                
                with col2:
                    # Plot classification report
                    st.write("### Classification Report")
                    report_df = pd.DataFrame(class_report).transpose()
                    st.dataframe(report_df.style.format({
                        'precision': '{:.2f}',
                        'recall': '{:.2f}',
                        'f1-score': '{:.2f}',
                        'support': '{:.0f}'
                    }))
                
                
            except Exception as e:
                st.error(f"Error performing analysis: {e}")
        else:
            st.error("Model could not be loaded. Please check if the model file exists.")
    else:
        st.error("Cannot perform model analysis. Dataset is empty or missing target variable.")

st.sidebar.write("Forecasting discharge outcomes for critically ILL patients using machine learning")