Spaces:
No application file
No application file
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain_community.vectorstores import FAISS | |
from dotenv import load_dotenv, find_dotenv | |
load_dotenv(find_dotenv()) | |
# Step 1: Load raw PDF(s) | |
DATA_PATH="data/" | |
def load_pdf_files(data): | |
loader = DirectoryLoader(data, | |
glob='*.pdf', | |
loader_cls=PyPDFLoader) | |
documents=loader.load() | |
return documents | |
documents=load_pdf_files(data=DATA_PATH) | |
#print("Length of PDF pages: ", len(documents)) | |
# Step 2: Create Chunks | |
def create_chunks(extracted_data): | |
text_splitter=RecursiveCharacterTextSplitter(chunk_size=500, | |
chunk_overlap=50) | |
text_chunks=text_splitter.split_documents(extracted_data) | |
return text_chunks | |
text_chunks=create_chunks(extracted_data=documents) | |
print("Length of Text Chunks: ", len(text_chunks)) | |
# Step 3: Create Vector Embeddings | |
def get_embedding_model(): | |
embedding_model=HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") | |
return embedding_model | |
embedding_model=get_embedding_model() | |
# Step 4: Store embeddings in FAISS | |
DB_FAISS_PATH="vectorstore/db_faiss" | |
db=FAISS.from_documents(text_chunks, embedding_model) | |
db.save_local(DB_FAISS_PATH) |