import os import streamlit as st # Update these imports from langchain_community.embeddings import HuggingFaceEmbeddings from langchain.chains import RetrievalQA from langchain_community.vectorstores import FAISS from langchain_core.prompts import PromptTemplate from langchain_huggingface import HuggingFaceEndpoint from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv()) DB_FAISS_PATH = "vectorstore/db_faiss" @st.cache_resource def get_vectorstore(): embedding_model = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2') db = FAISS.load_local(DB_FAISS_PATH, embedding_model, allow_dangerous_deserialization=True) return db def set_custom_prompt(custom_prompt_template): prompt = PromptTemplate(template=custom_prompt_template, input_variables=["context", "question"]) return prompt def load_llm(huggingface_repo_id, HF_TOKEN): llm = HuggingFaceEndpoint( repo_id=huggingface_repo_id, task="text-generation", # Add this line temperature=0.5, model_kwargs={ "token": HF_TOKEN, "max_length": 512 # Changed to integer } ) return llm def main(): st.title("Ask Chatbot!") if 'messages' not in st.session_state: st.session_state.messages = [] for message in st.session_state.messages: st.chat_message(message['role']).markdown(message['content']) prompt = st.chat_input("Pass your prompt here") if prompt: st.chat_message('user').markdown(prompt) st.session_state.messages.append({'role': 'user', 'content': prompt}) CUSTOM_PROMPT_TEMPLATE = """ Use the pieces of information provided in the context to answer user's question. If you dont know the answer, just say that you dont know, dont try to make up an answer. Dont provide anything out of the given context Context: {context} Question: {question} Start the answer directly. No small talk please. """ HUGGINGFACE_REPO_ID = "mistralai/Mistral-7B-Instruct-v0.3" HF_TOKEN = os.environ.get("HF_TOKEN") try: with st.spinner("Thinking..."): # Add loading indicator vectorstore = get_vectorstore() if vectorstore is None: st.error("Failed to load the vector store") return qa_chain = RetrievalQA.from_chain_type( llm=load_llm(huggingface_repo_id=HUGGINGFACE_REPO_ID, HF_TOKEN=HF_TOKEN), chain_type="stuff", retriever=vectorstore.as_retriever(search_kwargs={'k': 3}), return_source_documents=True, chain_type_kwargs={'prompt': set_custom_prompt(CUSTOM_PROMPT_TEMPLATE)} ) response = qa_chain.invoke({'query': prompt}) result = response["result"] source_documents = response["source_documents"] # Format source documents more cleanly source_docs_text = "\n\n**Source Documents:**\n" for i, doc in enumerate(source_documents, 1): source_docs_text += f"{i}. Page {doc.metadata.get('page', 'N/A')}: {doc.page_content[:200]}...\n\n" result_to_show = f"{result}\n{source_docs_text}" st.chat_message('assistant').markdown(result_to_show) st.session_state.messages.append({'role': 'assistant', 'content': result_to_show}) except Exception as e: st.error(f"Error: {str(e)}") st.error("Please check your HuggingFace token and model access permissions") if __name__ == "__main__": main()