import os from langchain_huggingface import HuggingFaceEndpoint from langchain_core.prompts import PromptTemplate from langchain.chains import RetrievalQA from langchain_huggingface import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv()) # Step 1: Setup LLM (Mistral with HuggingFace) HF_TOKEN=os.environ.get("HF_TOKEN") HUGGINGFACE_REPO_ID="mistralai/Mistral-7B-Instruct-v0.3" def load_llm(huggingface_repo_id): llm=HuggingFaceEndpoint( repo_id=huggingface_repo_id, task="text-generation", temperature=0.5, model_kwargs={"token":HF_TOKEN, "max_length":512} ) return llm # Step 2: Connect LLM with FAISS and Create chain CUSTOM_PROMPT_TEMPLATE = """ Use the pieces of information provided in the context to answer user's question. If you dont know the answer, just say that you dont know, dont try to make up an answer. Dont provide anything out of the given context Context: {context} Question: {question} Start the answer directly. No small talk please. """ def set_custom_prompt(custom_prompt_template): prompt=PromptTemplate(template=custom_prompt_template, input_variables=["context", "question"]) return prompt # Load Database DB_FAISS_PATH="vectorstore/db_faiss" embedding_model=HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") db=FAISS.load_local(DB_FAISS_PATH, embedding_model, allow_dangerous_deserialization=True) # Create QA chain qa_chain=RetrievalQA.from_chain_type( llm=load_llm(HUGGINGFACE_REPO_ID), chain_type="stuff", retriever=db.as_retriever(search_kwargs={'k':3}), return_source_documents=True, chain_type_kwargs={'prompt':set_custom_prompt(CUSTOM_PROMPT_TEMPLATE)} ) # Now invoke with a single query user_query=input("Write Query Here: ") response=qa_chain.invoke({'query': user_query}) print("RESULT: ", response["result"]) print("SOURCE DOCUMENTS: ", response["source_documents"])