File size: 4,820 Bytes
771b385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
from PIL import Image
from transformers import ViTFeatureExtractor, ViTForImageClassification
import warnings
import requests
import gradio as gr

warnings.filterwarnings('ignore')

# Load the pre-trained Vision Transformer model and feature extractor
model_name = "google/vit-base-patch16-224"
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
model = ViTForImageClassification.from_pretrained(model_name)

# API keys for the Nutritionix API
nutritionix_app_id = '368711d5'
nutritionix_api_key = '2d35fd0c4b1503f917ce9a8230d772a8'

def identify_image(image_path):
    """Identify the food item in the image."""
    image = Image.open(image_path)
    inputs = feature_extractor(images=image, return_tensors="pt")
    outputs = model(**inputs)
    logits = outputs.logits
    predicted_class_idx = logits.argmax(-1).item()
    predicted_label = model.config.id2label[predicted_class_idx]
    food_name = predicted_label.split(',')[0]
    return food_name

def get_calories(food_name):
    """Get the calorie information of the identified food item."""
    api_url = 'https://trackapi.nutritionix.com/v2/natural/nutrients'
    headers = {
        'x-app-id': nutritionix_app_id,
        'x-app-key': nutritionix_api_key,
        'Content-Type': 'application/json'
    }
    data = {"query": food_name}
    response = requests.post(api_url, headers=headers, json=data)
    if response.status_code == requests.codes.ok:
        nutrition_info = response.json()
    else:
        nutrition_info = {"Error": response.status_code, "Message": response.text}
    return nutrition_info

def format_nutrition_info(nutrition_info):
    """Format the nutritional information into an HTML table."""
    if "Error" in nutrition_info:
        return f"Error: {nutrition_info['Error']} - {nutrition_info['Message']}"
    
    if len(nutrition_info['foods']) == 0:
        return "No nutritional information found."

    nutrition_data = nutrition_info['foods'][0]
    table = f"""
    <table border="1" style="width: 100%; border-collapse: collapse;">
        <tr><th colspan="4" style="text-align: center;"><b>Nutrition Facts</b></th></tr>
        <tr><td colspan="4" style="text-align: center;"><b>Food Name: {nutrition_data['food_name']}</b></td></tr>
        <tr>
            <td style="text-align: left;"><b>Calories</b></td><td style="text-align: right;">{nutrition_data['nf_calories']}</td>
            <td style="text-align: left;"><b>Serving Size (g)</b></td><td style="text-align: right;">{nutrition_data['serving_weight_grams']}</td>
        </tr>
        <tr>
            <td style="text-align: left;"><b>Total Fat (g)</b></td><td style="text-align: right;">{nutrition_data['nf_total_fat']}</td>
            <td style="text-align: left;"><b>Saturated Fat (g)</b></td><td style="text-align: right;">{nutrition_data['nf_saturated_fat']}</td>
        </tr>
        <tr>
            <td style="text-align: left;"><b>Protein (g)</b></td><td style="text-align: right;">{nutrition_data['nf_protein']}</td>
            <td style="text-align: left;"><b>Sodium (mg)</b></td><td style="text-align: right;">{nutrition_data['nf_sodium']}</td>
        </tr>
        <tr>
            <td style="text-align: left;"><b>Potassium (mg)</b></td><td style="text-align: right;">{nutrition_data['nf_potassium']}</td>
            <td style="text-align: left;"><b>Cholesterol (mg)</b></td><td style="text-align: right;">{nutrition_data['nf_cholesterol']}</td>
        </tr>
        <tr>
            <td style="text-align: left;"><b>Total Carbohydrates (g)</b></td><td style="text-align: right;">{nutrition_data['nf_total_carbohydrate']}</td>
            <td style="text-align: left;"><b>Fiber (g)</b></td><td style="text-align: right;">{nutrition_data['nf_dietary_fiber']}</td>
        </tr>
        <tr>
            <td style="text-align: left;"><b>Sugar (g)</b></td><td style="text-align: right;">{nutrition_data['nf_sugars']}</td>
            <td></td><td></td>
        </tr>
    </table>
    """
    return table

def main_process(image_path):
    """Identify the food item and fetch its calorie information."""
    food_name = identify_image(image_path)
    nutrition_info = get_calories(food_name)
    formatted_nutrition_info = format_nutrition_info(nutrition_info)
    return formatted_nutrition_info

# Define the Gradio interface
def gradio_interface(image):
    formatted_nutrition_info = main_process(image)
    return formatted_nutrition_info

# Create the Gradio UI
iface = gr.Interface(
    fn=gradio_interface,
    inputs=gr.Image(type="filepath"),
    outputs="html",
    title="Food Identification and Nutrition Info",
    description="Upload an image of food to get nutritional information.",
    allow_flagging="never"  # Disable flagging
)

# Launch the Gradio app
if __name__ == "__main__":
    iface.launch()