Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- Data_syw.xlsx +0 -0
- README.md +32 -6
- app.py +227 -0
- friction_model.pt +3 -0
- requirements.txt +9 -0
Data_syw.xlsx
ADDED
Binary file (37.7 kB). View file
|
|
README.md
CHANGED
@@ -1,12 +1,38 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
-
sdk_version: 1.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Fricitonangle prediction of solid waste
|
3 |
+
emoji: π
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: green
|
6 |
sdk: streamlit
|
7 |
+
sdk_version: "1.29.0"
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
# Friction Angle Predictor
|
13 |
+
|
14 |
+
This Streamlit app predicts the friction angle of waste materials based on their composition and characteristics. The app uses a deep learning model trained on waste composition data to make predictions and provides SHAP value explanations for model interpretability.
|
15 |
+
|
16 |
+
## Features
|
17 |
+
|
18 |
+
- Interactive input for waste composition parameters
|
19 |
+
- Real-time prediction of friction angle
|
20 |
+
- SHAP waterfall plot for model interpretation
|
21 |
+
- User-friendly interface
|
22 |
+
|
23 |
+
## Usage
|
24 |
+
|
25 |
+
1. Enter the waste composition values in the input fields
|
26 |
+
2. Click "Predict Friction Angle" to get the prediction
|
27 |
+
3. View the results and SHAP waterfall plot for explanation
|
28 |
+
|
29 |
+
## Model
|
30 |
+
|
31 |
+
The model is a neural network trained on waste composition data. It uses the following features:
|
32 |
+
- Waste composition percentages
|
33 |
+
- Physical properties
|
34 |
+
- Material characteristics
|
35 |
+
|
36 |
+
## Requirements
|
37 |
+
|
38 |
+
See `requirements.txt` for all dependencies.
|
app.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
# Disable OpenMP
|
3 |
+
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
4 |
+
os.environ['OMP_NUM_THREADS'] = '1'
|
5 |
+
os.environ['OPENBLAS_NUM_THREADS'] = '1'
|
6 |
+
os.environ['MKL_NUM_THREADS'] = '1'
|
7 |
+
os.environ['VECLIB_MAXIMUM_THREADS'] = '1'
|
8 |
+
os.environ['NUMEXPR_NUM_THREADS'] = '1'
|
9 |
+
|
10 |
+
import streamlit as st
|
11 |
+
import torch
|
12 |
+
import numpy as np
|
13 |
+
import pandas as pd
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
import shap
|
16 |
+
from sklearn.preprocessing import MinMaxScaler
|
17 |
+
import plotly.graph_objects as go
|
18 |
+
import io
|
19 |
+
from matplotlib.figure import Figure
|
20 |
+
|
21 |
+
# Set page config
|
22 |
+
st.set_page_config(
|
23 |
+
page_title="Friction Angle Predictor",
|
24 |
+
page_icon="π",
|
25 |
+
layout="wide"
|
26 |
+
)
|
27 |
+
|
28 |
+
# Custom CSS to improve the app's appearance
|
29 |
+
st.markdown("""
|
30 |
+
<style>
|
31 |
+
.stApp {
|
32 |
+
max-width: 1200px;
|
33 |
+
margin: 0 auto;
|
34 |
+
}
|
35 |
+
.main {
|
36 |
+
padding: 2rem;
|
37 |
+
}
|
38 |
+
.stButton>button {
|
39 |
+
width: 100%;
|
40 |
+
}
|
41 |
+
</style>
|
42 |
+
""", unsafe_allow_html=True)
|
43 |
+
|
44 |
+
# Load the trained model and recreate the architecture
|
45 |
+
class Net(torch.nn.Module):
|
46 |
+
def __init__(self, input_size):
|
47 |
+
super(Net, self).__init__()
|
48 |
+
self.fc1 = torch.nn.Linear(input_size, 64)
|
49 |
+
self.fc2 = torch.nn.Linear(64, 1000)
|
50 |
+
self.fc3 = torch.nn.Linear(1000, 200)
|
51 |
+
self.fc4 = torch.nn.Linear(200, 8)
|
52 |
+
self.fc5 = torch.nn.Linear(8, 1)
|
53 |
+
self.dropout = torch.nn.Dropout(0.2)
|
54 |
+
|
55 |
+
# Initialize weights
|
56 |
+
self.apply(self._init_weights)
|
57 |
+
|
58 |
+
def _init_weights(self, module):
|
59 |
+
if isinstance(module, torch.nn.Linear):
|
60 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
61 |
+
if module.bias is not None:
|
62 |
+
module.bias.data.zero_()
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
x = torch.nn.functional.relu(self.fc1(x))
|
66 |
+
x = self.dropout(x)
|
67 |
+
x = torch.nn.functional.relu(self.fc2(x))
|
68 |
+
x = self.dropout(x)
|
69 |
+
x = torch.nn.functional.relu(self.fc3(x))
|
70 |
+
x = self.dropout(x)
|
71 |
+
x = torch.nn.functional.relu(self.fc4(x))
|
72 |
+
x = self.dropout(x)
|
73 |
+
x = self.fc5(x)
|
74 |
+
return x
|
75 |
+
|
76 |
+
@st.cache_resource
|
77 |
+
def load_model_and_data():
|
78 |
+
# Set device and random seeds
|
79 |
+
np.random.seed(32)
|
80 |
+
torch.manual_seed(42)
|
81 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
82 |
+
|
83 |
+
# Load data
|
84 |
+
data = pd.read_excel("Data_syw.xlsx")
|
85 |
+
X = data.iloc[:, list(range(1, 17)) + list(range(21, 23))]
|
86 |
+
y = data.iloc[:, 28].values
|
87 |
+
|
88 |
+
# Calculate correlation and select features
|
89 |
+
correlation_with_target = abs(X.corrwith(pd.Series(y)))
|
90 |
+
selected_features = correlation_with_target[correlation_with_target > 0.1].index
|
91 |
+
X = X[selected_features]
|
92 |
+
|
93 |
+
# Initialize and fit scalers
|
94 |
+
scaler_X = MinMaxScaler()
|
95 |
+
scaler_y = MinMaxScaler()
|
96 |
+
scaler_X.fit(X)
|
97 |
+
scaler_y.fit(y.reshape(-1, 1))
|
98 |
+
|
99 |
+
# Load model
|
100 |
+
model = Net(input_size=len(selected_features)).to(device)
|
101 |
+
model.load_state_dict(torch.load('friction_model.pt'))
|
102 |
+
model.eval()
|
103 |
+
|
104 |
+
return model, X.columns, scaler_X, scaler_y, device, X
|
105 |
+
|
106 |
+
def predict_friction(input_values, model, scaler_X, scaler_y, device):
|
107 |
+
# Scale input values
|
108 |
+
input_scaled = scaler_X.transform(input_values)
|
109 |
+
input_tensor = torch.FloatTensor(input_scaled).to(device)
|
110 |
+
|
111 |
+
# Make prediction
|
112 |
+
with torch.no_grad():
|
113 |
+
prediction_scaled = model(input_tensor)
|
114 |
+
prediction = scaler_y.inverse_transform(prediction_scaled.cpu().numpy().reshape(-1, 1))
|
115 |
+
|
116 |
+
return prediction[0][0]
|
117 |
+
|
118 |
+
def calculate_shap_values(input_values, model, X, scaler_X, scaler_y, device):
|
119 |
+
def model_predict(X):
|
120 |
+
X_scaled = scaler_X.transform(X)
|
121 |
+
X_tensor = torch.FloatTensor(X_scaled).to(device)
|
122 |
+
with torch.no_grad():
|
123 |
+
scaled_pred = model(X_tensor).cpu().numpy()
|
124 |
+
return scaler_y.inverse_transform(scaled_pred.reshape(-1, 1)).flatten()
|
125 |
+
|
126 |
+
try:
|
127 |
+
# Use a smaller background dataset and fewer samples for stability
|
128 |
+
background = shap.kmeans(X.values, k=5) # Reduced from 10 to 5
|
129 |
+
explainer = shap.KernelExplainer(model_predict, background)
|
130 |
+
shap_values = explainer.shap_values(input_values.values, nsamples=100) # Added nsamples parameter
|
131 |
+
|
132 |
+
if isinstance(shap_values, list):
|
133 |
+
shap_values = np.array(shap_values[0])
|
134 |
+
|
135 |
+
return shap_values[0], explainer.expected_value
|
136 |
+
except Exception as e:
|
137 |
+
st.error(f"Error calculating SHAP values: {str(e)}")
|
138 |
+
# Return dummy values in case of error
|
139 |
+
return np.zeros(len(input_values.columns)), 0.0
|
140 |
+
|
141 |
+
def create_waterfall_plot(shap_values, feature_names, base_value, input_data):
|
142 |
+
# Create SHAP explanation object
|
143 |
+
explanation = shap.Explanation(
|
144 |
+
values=shap_values,
|
145 |
+
base_values=base_value,
|
146 |
+
data=input_data,
|
147 |
+
feature_names=list(feature_names)
|
148 |
+
)
|
149 |
+
|
150 |
+
# Create figure
|
151 |
+
fig = plt.figure(figsize=(12, 8))
|
152 |
+
shap.plots.waterfall(explanation, show=False)
|
153 |
+
plt.title('Local SHAP Value Contributions')
|
154 |
+
plt.tight_layout()
|
155 |
+
|
156 |
+
# Save plot to a buffer
|
157 |
+
buf = io.BytesIO()
|
158 |
+
plt.savefig(buf, format='png', bbox_inches='tight', dpi=300)
|
159 |
+
plt.close(fig)
|
160 |
+
buf.seek(0)
|
161 |
+
return buf
|
162 |
+
|
163 |
+
def main():
|
164 |
+
st.title("π Friction Angle Predictor")
|
165 |
+
st.write("This app predicts the friction angle based on waste composition and characteristics.")
|
166 |
+
|
167 |
+
try:
|
168 |
+
# Load model and data
|
169 |
+
model, feature_names, scaler_X, scaler_y, device, X = load_model_and_data()
|
170 |
+
|
171 |
+
# Create two columns for input
|
172 |
+
col1, col2 = st.columns(2)
|
173 |
+
|
174 |
+
# Dictionary to store input values
|
175 |
+
input_values = {}
|
176 |
+
|
177 |
+
# Create input fields for each feature
|
178 |
+
for i, feature in enumerate(feature_names):
|
179 |
+
with col1 if i < len(feature_names)//2 else col2:
|
180 |
+
min_val = float(X[feature].min())
|
181 |
+
max_val = float(X[feature].max())
|
182 |
+
mean_val = float(X[feature].mean())
|
183 |
+
|
184 |
+
input_values[feature] = st.number_input(
|
185 |
+
f"{feature}",
|
186 |
+
min_value=min_val,
|
187 |
+
max_value=max_val,
|
188 |
+
value=mean_val,
|
189 |
+
help=f"Range: {min_val:.2f} to {max_val:.2f}"
|
190 |
+
)
|
191 |
+
|
192 |
+
# Create DataFrame from input values
|
193 |
+
input_df = pd.DataFrame([input_values])
|
194 |
+
|
195 |
+
if st.button("Predict Friction Angle"):
|
196 |
+
with st.spinner("Calculating prediction and SHAP values..."):
|
197 |
+
# Make prediction
|
198 |
+
prediction = predict_friction(input_df, model, scaler_X, scaler_y, device)
|
199 |
+
|
200 |
+
# Calculate SHAP values
|
201 |
+
shap_values, base_value = calculate_shap_values(input_df, model, X, scaler_X, scaler_y, device)
|
202 |
+
|
203 |
+
# Display results
|
204 |
+
st.header("Results")
|
205 |
+
col1, col2 = st.columns(2)
|
206 |
+
|
207 |
+
with col1:
|
208 |
+
st.metric("Predicted Friction Angle", f"{prediction:.2f}Β°")
|
209 |
+
with col2:
|
210 |
+
st.metric("Base Value", f"{base_value:.2f}Β°")
|
211 |
+
|
212 |
+
# Create and display waterfall plot
|
213 |
+
st.header("SHAP Waterfall Plot")
|
214 |
+
waterfall_plot = create_waterfall_plot(
|
215 |
+
shap_values=shap_values,
|
216 |
+
feature_names=feature_names,
|
217 |
+
base_value=base_value,
|
218 |
+
input_data=input_df.values[0]
|
219 |
+
)
|
220 |
+
st.image(waterfall_plot)
|
221 |
+
|
222 |
+
except Exception as e:
|
223 |
+
st.error(f"An error occurred: {str(e)}")
|
224 |
+
st.info("Please try refreshing the page. If the error persists, contact support.")
|
225 |
+
|
226 |
+
if __name__ == "__main__":
|
227 |
+
main()
|
friction_model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b003757ab36efc16f7160b0a3e8aa495fe722030ac8088da0804b3edec34f30
|
3 |
+
size 1075034
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
torch
|
3 |
+
numpy
|
4 |
+
pandas
|
5 |
+
matplotlib
|
6 |
+
shap
|
7 |
+
scikit-learn
|
8 |
+
plotly
|
9 |
+
openpyxl
|