Spaces:
Sleeping
Sleeping
Upload 15 files
Browse files- .gitattributes +1 -0
- Dockerfile +19 -12
- HDD_result.xlsx +0 -0
- Procfile +1 -0
- README1.md +198 -0
- app.py +387 -0
- decision_tree_model.pkl +3 -0
- docker-compose.yml +23 -0
- dt_soil_encoder.pkl +3 -0
- dt_solution_encoder.pkl +3 -0
- dt_water_encoder.pkl +3 -0
- logo2.e8c5ff97.png +3 -0
- mobile_app.py +239 -0
- requirements.txt +7 -2
- run.py +114 -0
- runtime.txt +1 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
logo2.e8c5ff97.png filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
CHANGED
@@ -1,21 +1,28 @@
|
|
1 |
-
|
|
|
2 |
|
|
|
3 |
WORKDIR /app
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
curl \
|
8 |
-
software-properties-common \
|
9 |
-
git \
|
10 |
-
&& rm -rf /var/lib/apt/lists/*
|
11 |
|
12 |
-
|
13 |
-
|
14 |
|
15 |
-
|
|
|
16 |
|
|
|
|
|
|
|
|
|
|
|
17 |
EXPOSE 8501
|
18 |
|
19 |
-
|
|
|
|
|
20 |
|
21 |
-
|
|
|
|
1 |
+
# HDD Solution Predictor - Docker Deployment
|
2 |
+
FROM python:3.11-slim
|
3 |
|
4 |
+
# Set working directory
|
5 |
WORKDIR /app
|
6 |
|
7 |
+
# Copy requirements first (for better caching)
|
8 |
+
COPY requirements.txt .
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# Install Python dependencies
|
11 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
12 |
|
13 |
+
# Copy application files
|
14 |
+
COPY . .
|
15 |
|
16 |
+
# Create non-root user for security
|
17 |
+
RUN useradd -m -u 1000 appuser && chown -R appuser:appuser /app
|
18 |
+
USER appuser
|
19 |
+
|
20 |
+
# Expose port
|
21 |
EXPOSE 8501
|
22 |
|
23 |
+
# Health check
|
24 |
+
HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \
|
25 |
+
CMD curl -f http://localhost:8501/_stcore/health || exit 1
|
26 |
|
27 |
+
# Run application
|
28 |
+
CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0", "--server.headless=true"]
|
HDD_result.xlsx
ADDED
Binary file (9.14 kB). View file
|
|
Procfile
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
web: streamlit run app.py --server.port=$PORT --server.address=0.0.0.0
|
README1.md
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🚀 HDD Solution Predictor - Deployment Package
|
2 |
+
|
3 |
+
Ready-to-deploy package for the HDD Solution Predictor application.
|
4 |
+
|
5 |
+
## 📦 Package Contents
|
6 |
+
|
7 |
+
### **Application Files**
|
8 |
+
- `app.py` - Main Streamlit application (recommended)
|
9 |
+
- `mobile_app.py` - Mobile-optimized version
|
10 |
+
- `requirements.txt` - Python dependencies
|
11 |
+
|
12 |
+
### **Model Files**
|
13 |
+
- `decision_tree_model.pkl` - Trained Decision Tree model (100% accuracy)
|
14 |
+
- `dt_soil_encoder.pkl` - Soil type label encoder
|
15 |
+
- `dt_water_encoder.pkl` - Water table label encoder
|
16 |
+
- `dt_solution_encoder.pkl` - Solution label encoder
|
17 |
+
|
18 |
+
### **Assets**
|
19 |
+
- `logo2.e8c5ff97.png` - MEA (Metropolitan Electricity Authority) logo
|
20 |
+
- `HDD_result.xlsx` - Training dataset
|
21 |
+
|
22 |
+
### **Documentation**
|
23 |
+
- `README.md` - This deployment guide
|
24 |
+
|
25 |
+
## 🔧 Quick Deployment
|
26 |
+
|
27 |
+
### **1. Install Dependencies**
|
28 |
+
```bash
|
29 |
+
pip install -r requirements.txt
|
30 |
+
```
|
31 |
+
|
32 |
+
### **2. Run Application**
|
33 |
+
```bash
|
34 |
+
# Main application (recommended)
|
35 |
+
streamlit run app.py
|
36 |
+
|
37 |
+
# Or mobile version
|
38 |
+
streamlit run mobile_app.py
|
39 |
+
```
|
40 |
+
|
41 |
+
### **3. Access Application**
|
42 |
+
- Local: `http://localhost:8501`
|
43 |
+
- Network: Will be shown in terminal
|
44 |
+
|
45 |
+
## 🌐 Deployment Options
|
46 |
+
|
47 |
+
### **Option A: Local Development**
|
48 |
+
```bash
|
49 |
+
git clone <repository>
|
50 |
+
cd deploy
|
51 |
+
pip install -r requirements.txt
|
52 |
+
streamlit run app.py
|
53 |
+
```
|
54 |
+
|
55 |
+
### **Option B: Streamlit Cloud**
|
56 |
+
1. Upload all files to GitHub repository
|
57 |
+
2. Connect to Streamlit Cloud
|
58 |
+
3. Deploy from `deploy/app.py`
|
59 |
+
|
60 |
+
### **Option C: Docker Deployment**
|
61 |
+
Create `Dockerfile`:
|
62 |
+
```dockerfile
|
63 |
+
FROM python:3.11-slim
|
64 |
+
|
65 |
+
WORKDIR /app
|
66 |
+
COPY . .
|
67 |
+
|
68 |
+
RUN pip install -r requirements.txt
|
69 |
+
|
70 |
+
EXPOSE 8501
|
71 |
+
|
72 |
+
CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0"]
|
73 |
+
```
|
74 |
+
|
75 |
+
### **Option D: Heroku Deployment**
|
76 |
+
Create `Procfile`:
|
77 |
+
```
|
78 |
+
web: streamlit run app.py --server.port=$PORT --server.address=0.0.0.0
|
79 |
+
```
|
80 |
+
|
81 |
+
## 📊 Application Features
|
82 |
+
|
83 |
+
### **Core Functionality**
|
84 |
+
- **Input Parameters**: Pipe diameter, soil type, water table
|
85 |
+
- **ML Prediction**: Decision Tree with 100% training accuracy
|
86 |
+
- **Solution Types**: A, B, C, D, E (different protection levels)
|
87 |
+
|
88 |
+
### **Technical Specifications**
|
89 |
+
- **Framework**: Streamlit
|
90 |
+
- **ML Model**: Scikit-learn Decision Tree
|
91 |
+
- **Design**: Canva-style responsive UI
|
92 |
+
- **Branding**: MEA institutional logo
|
93 |
+
|
94 |
+
### **Supported Solutions**
|
95 |
+
- **Solution A**: Enhanced Protection (Sheetpile + Trench + Grouting)
|
96 |
+
- **Solution B**: Maximum Protection (+ Casing)
|
97 |
+
- **Solution C**: Moderate Protection (Sheetpile + Trench)
|
98 |
+
- **Solution D**: Basic Protection (Grouting Only)
|
99 |
+
- **Solution E**: Minimal Intervention (No Additional Measures)
|
100 |
+
|
101 |
+
## 🔍 System Requirements
|
102 |
+
|
103 |
+
### **Python Version**
|
104 |
+
- Python 3.8 or higher (recommended: 3.11)
|
105 |
+
|
106 |
+
### **Dependencies**
|
107 |
+
- streamlit
|
108 |
+
- pandas
|
109 |
+
- numpy
|
110 |
+
- scikit-learn
|
111 |
+
- joblib
|
112 |
+
- plotly
|
113 |
+
- openpyxl
|
114 |
+
- Pillow
|
115 |
+
|
116 |
+
### **Resources**
|
117 |
+
- **RAM**: Minimum 512MB, Recommended 1GB
|
118 |
+
- **Storage**: ~50MB for all files
|
119 |
+
- **Network**: Internet connection for initial setup
|
120 |
+
|
121 |
+
## 🔧 Configuration
|
122 |
+
|
123 |
+
### **Environment Variables** (Optional)
|
124 |
+
```bash
|
125 |
+
export STREAMLIT_SERVER_PORT=8501
|
126 |
+
export STREAMLIT_SERVER_ADDRESS=0.0.0.0
|
127 |
+
```
|
128 |
+
|
129 |
+
### **Streamlit Config** (Create `.streamlit/config.toml`)
|
130 |
+
```toml
|
131 |
+
[server]
|
132 |
+
port = 8501
|
133 |
+
address = "0.0.0.0"
|
134 |
+
|
135 |
+
[theme]
|
136 |
+
primaryColor = "#6c5ce7"
|
137 |
+
backgroundColor = "#ffffff"
|
138 |
+
secondaryBackgroundColor = "#f0f2f6"
|
139 |
+
```
|
140 |
+
|
141 |
+
## 🚨 Troubleshooting
|
142 |
+
|
143 |
+
### **Model Loading Issues**
|
144 |
+
- Ensure all `.pkl` files are in the same directory
|
145 |
+
- Check Python/scikit-learn version compatibility
|
146 |
+
|
147 |
+
### **Logo Not Displaying**
|
148 |
+
- Verify `logo2.e8c5ff97.png` exists in directory
|
149 |
+
- App will show MEA text fallback if logo missing
|
150 |
+
|
151 |
+
### **Port Already in Use**
|
152 |
+
```bash
|
153 |
+
streamlit run app.py --server.port=8502
|
154 |
+
```
|
155 |
+
|
156 |
+
### **Permission Issues**
|
157 |
+
```bash
|
158 |
+
chmod +x app.py
|
159 |
+
pip install --user -r requirements.txt
|
160 |
+
```
|
161 |
+
|
162 |
+
## 📱 Mobile Access
|
163 |
+
|
164 |
+
The application is fully responsive and works on:
|
165 |
+
- ✅ Desktop browsers
|
166 |
+
- ✅ Mobile phones
|
167 |
+
- ✅ Tablets
|
168 |
+
- ✅ Touch devices
|
169 |
+
|
170 |
+
## 🔒 Security Notes
|
171 |
+
|
172 |
+
- Application runs locally by default
|
173 |
+
- No external API calls
|
174 |
+
- Model predictions processed locally
|
175 |
+
- Training data included for reference only
|
176 |
+
|
177 |
+
## 📞 Support
|
178 |
+
|
179 |
+
### **Common Issues**
|
180 |
+
1. **Dependencies**: Run `pip install -r requirements.txt`
|
181 |
+
2. **Port conflicts**: Use different port with `--server.port=XXXX`
|
182 |
+
3. **File paths**: Ensure all files are in same directory
|
183 |
+
|
184 |
+
### **Performance**
|
185 |
+
- **Model loading**: ~1-2 seconds on first run
|
186 |
+
- **Predictions**: Instant (<100ms)
|
187 |
+
- **UI rendering**: <1 second
|
188 |
+
|
189 |
+
---
|
190 |
+
|
191 |
+
## 🎯 Ready to Deploy!
|
192 |
+
|
193 |
+
1. **Install requirements**: `pip install -r requirements.txt`
|
194 |
+
2. **Run application**: `streamlit run app.py`
|
195 |
+
3. **Open browser**: Navigate to displayed URL
|
196 |
+
4. **Start predicting**: Enter parameters and get solutions!
|
197 |
+
|
198 |
+
**🏢 Powered by MEA (Metropolitan Electricity Authority)**
|
app.py
ADDED
@@ -0,0 +1,387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import joblib
|
4 |
+
from PIL import Image
|
5 |
+
import base64
|
6 |
+
from io import BytesIO
|
7 |
+
|
8 |
+
# Page configuration
|
9 |
+
st.set_page_config(
|
10 |
+
page_title="HDD Solution Predictor",
|
11 |
+
page_icon="🔧",
|
12 |
+
layout="centered",
|
13 |
+
initial_sidebar_state="collapsed"
|
14 |
+
)
|
15 |
+
|
16 |
+
# Function to convert image to base64
|
17 |
+
def image_to_base64(image_path):
|
18 |
+
try:
|
19 |
+
with open(image_path, "rb") as img_file:
|
20 |
+
return base64.b64encode(img_file.read()).decode()
|
21 |
+
except:
|
22 |
+
return None
|
23 |
+
|
24 |
+
# Enhanced CSS with better styling
|
25 |
+
st.markdown("""
|
26 |
+
<style>
|
27 |
+
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
|
28 |
+
|
29 |
+
/* Hide Streamlit branding */
|
30 |
+
#MainMenu {visibility: hidden;}
|
31 |
+
footer {visibility: hidden;}
|
32 |
+
header {visibility: hidden;}
|
33 |
+
.stDeployButton {visibility: hidden;}
|
34 |
+
|
35 |
+
/* Main container */
|
36 |
+
.main {
|
37 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
38 |
+
min-height: 100vh;
|
39 |
+
padding: 2rem 1rem;
|
40 |
+
}
|
41 |
+
|
42 |
+
/* Logo container */
|
43 |
+
.logo-section {
|
44 |
+
text-align: center;
|
45 |
+
margin-bottom: 2rem;
|
46 |
+
padding: 1.5rem;
|
47 |
+
background: rgba(255,255,255,0.1);
|
48 |
+
border-radius: 20px;
|
49 |
+
backdrop-filter: blur(10px);
|
50 |
+
border: 1px solid rgba(255,255,255,0.2);
|
51 |
+
}
|
52 |
+
|
53 |
+
.logo-image {
|
54 |
+
max-width: 200px;
|
55 |
+
height: auto;
|
56 |
+
filter: drop-shadow(0 4px 8px rgba(0,0,0,0.1));
|
57 |
+
}
|
58 |
+
|
59 |
+
/* Title styling */
|
60 |
+
.main-title {
|
61 |
+
font-family: 'Inter', sans-serif;
|
62 |
+
font-size: 2.5rem;
|
63 |
+
font-weight: 700;
|
64 |
+
color: white;
|
65 |
+
text-align: center;
|
66 |
+
margin: 1rem 0 0.5rem 0;
|
67 |
+
text-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
68 |
+
}
|
69 |
+
|
70 |
+
.subtitle {
|
71 |
+
font-family: 'Inter', sans-serif;
|
72 |
+
font-size: 1.1rem;
|
73 |
+
color: rgba(255,255,255,0.9);
|
74 |
+
text-align: center;
|
75 |
+
margin-bottom: 2rem;
|
76 |
+
font-weight: 400;
|
77 |
+
}
|
78 |
+
|
79 |
+
/* Input container */
|
80 |
+
.input-container {
|
81 |
+
background: white;
|
82 |
+
border-radius: 25px;
|
83 |
+
padding: 2.5rem;
|
84 |
+
box-shadow: 0 20px 40px rgba(0,0,0,0.1);
|
85 |
+
margin: 2rem auto;
|
86 |
+
max-width: 500px;
|
87 |
+
border: 1px solid rgba(255,255,255,0.2);
|
88 |
+
}
|
89 |
+
|
90 |
+
/* Input styling */
|
91 |
+
.stSelectbox label, .stSlider label {
|
92 |
+
font-family: 'Inter', sans-serif;
|
93 |
+
font-weight: 600;
|
94 |
+
color: #2d3748;
|
95 |
+
font-size: 1rem;
|
96 |
+
margin-bottom: 0.5rem;
|
97 |
+
}
|
98 |
+
|
99 |
+
.stSelectbox > div > div {
|
100 |
+
background-color: #f8f9ff;
|
101 |
+
border-radius: 15px;
|
102 |
+
border: 2px solid #e1e8ff;
|
103 |
+
font-family: 'Inter', sans-serif;
|
104 |
+
font-size: 1rem;
|
105 |
+
padding: 0.5rem 1rem;
|
106 |
+
}
|
107 |
+
|
108 |
+
.stSlider > div > div {
|
109 |
+
background-color: #f8f9ff;
|
110 |
+
border-radius: 15px;
|
111 |
+
padding: 1.2rem;
|
112 |
+
border: 2px solid #e1e8ff;
|
113 |
+
}
|
114 |
+
|
115 |
+
/* Button styling */
|
116 |
+
.stButton > button {
|
117 |
+
background: linear-gradient(135deg, #6c5ce7, #fd79a8);
|
118 |
+
color: white;
|
119 |
+
border: none;
|
120 |
+
border-radius: 20px;
|
121 |
+
padding: 1rem 2rem;
|
122 |
+
font-family: 'Inter', sans-serif;
|
123 |
+
font-weight: 600;
|
124 |
+
font-size: 1.1rem;
|
125 |
+
box-shadow: 0 10px 25px rgba(108, 92, 231, 0.3);
|
126 |
+
transition: all 0.3s ease;
|
127 |
+
width: 100%;
|
128 |
+
margin-top: 2rem;
|
129 |
+
height: 60px;
|
130 |
+
}
|
131 |
+
|
132 |
+
.stButton > button:hover {
|
133 |
+
transform: translateY(-3px);
|
134 |
+
box-shadow: 0 15px 35px rgba(108, 92, 231, 0.4);
|
135 |
+
}
|
136 |
+
|
137 |
+
/* Result styling */
|
138 |
+
.result-container {
|
139 |
+
margin: 2rem auto;
|
140 |
+
max-width: 500px;
|
141 |
+
border-radius: 25px;
|
142 |
+
padding: 2.5rem;
|
143 |
+
text-align: center;
|
144 |
+
box-shadow: 0 20px 40px rgba(0,0,0,0.15);
|
145 |
+
border: 3px solid rgba(255,255,255,0.3);
|
146 |
+
}
|
147 |
+
|
148 |
+
.solution-badge {
|
149 |
+
display: inline-block;
|
150 |
+
font-size: 4rem;
|
151 |
+
font-weight: 700;
|
152 |
+
color: white;
|
153 |
+
background: rgba(255,255,255,0.2);
|
154 |
+
border-radius: 50%;
|
155 |
+
width: 100px;
|
156 |
+
height: 100px;
|
157 |
+
line-height: 100px;
|
158 |
+
margin-bottom: 1rem;
|
159 |
+
border: 4px solid rgba(255,255,255,0.3);
|
160 |
+
box-shadow: 0 10px 20px rgba(0,0,0,0.1);
|
161 |
+
}
|
162 |
+
|
163 |
+
.solution-title {
|
164 |
+
color: white;
|
165 |
+
font-family: 'Inter', sans-serif;
|
166 |
+
font-size: 1.5rem;
|
167 |
+
font-weight: 700;
|
168 |
+
margin-bottom: 0.5rem;
|
169 |
+
text-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
170 |
+
}
|
171 |
+
|
172 |
+
.solution-description {
|
173 |
+
color: rgba(255,255,255,0.95);
|
174 |
+
font-family: 'Inter', sans-serif;
|
175 |
+
font-size: 1.1rem;
|
176 |
+
font-weight: 500;
|
177 |
+
line-height: 1.4;
|
178 |
+
}
|
179 |
+
|
180 |
+
/* Solution colors */
|
181 |
+
.solution-a { background: linear-gradient(135deg, #4CAF50, #45a049); }
|
182 |
+
.solution-b { background: linear-gradient(135deg, #FF9800, #f57c00); }
|
183 |
+
.solution-c { background: linear-gradient(135deg, #E91E63, #c2185b); }
|
184 |
+
.solution-d { background: linear-gradient(135deg, #9C27B0, #7b1fa2); }
|
185 |
+
.solution-e { background: linear-gradient(135deg, #8BC34A, #689f38); }
|
186 |
+
|
187 |
+
/* Footer */
|
188 |
+
.footer {
|
189 |
+
text-align: center;
|
190 |
+
margin-top: 2rem;
|
191 |
+
color: rgba(255,255,255,0.7);
|
192 |
+
font-family: 'Inter', sans-serif;
|
193 |
+
font-size: 0.9rem;
|
194 |
+
}
|
195 |
+
|
196 |
+
/* Responsive design */
|
197 |
+
@media (max-width: 768px) {
|
198 |
+
.input-container {
|
199 |
+
margin: 1rem;
|
200 |
+
padding: 2rem 1.5rem;
|
201 |
+
}
|
202 |
+
.main-title {
|
203 |
+
font-size: 2rem;
|
204 |
+
}
|
205 |
+
.solution-badge {
|
206 |
+
width: 80px;
|
207 |
+
height: 80px;
|
208 |
+
line-height: 80px;
|
209 |
+
font-size: 3rem;
|
210 |
+
}
|
211 |
+
.logo-section {
|
212 |
+
margin-bottom: 1rem;
|
213 |
+
padding: 1rem;
|
214 |
+
}
|
215 |
+
.logo-image {
|
216 |
+
max-width: 150px;
|
217 |
+
}
|
218 |
+
}
|
219 |
+
</style>
|
220 |
+
""", unsafe_allow_html=True)
|
221 |
+
|
222 |
+
# Load model function
|
223 |
+
@st.cache_resource
|
224 |
+
def load_model():
|
225 |
+
try:
|
226 |
+
model = joblib.load('decision_tree_model.pkl')
|
227 |
+
le_soil = joblib.load('dt_soil_encoder.pkl')
|
228 |
+
le_water = joblib.load('dt_water_encoder.pkl')
|
229 |
+
le_solution = joblib.load('dt_solution_encoder.pkl')
|
230 |
+
return model, le_soil, le_water, le_solution
|
231 |
+
except FileNotFoundError:
|
232 |
+
st.error("⚠️ Model files not found! Please run the training script first.")
|
233 |
+
return None, None, None, None
|
234 |
+
|
235 |
+
# Prediction function
|
236 |
+
def predict_solution(diameter, soil_type, high_water, model, le_soil, le_water, le_solution):
|
237 |
+
try:
|
238 |
+
# Encode inputs
|
239 |
+
soil_encoded = le_soil.transform([soil_type])[0]
|
240 |
+
water_encoded = le_water.transform([high_water])[0]
|
241 |
+
|
242 |
+
# Create feature vector
|
243 |
+
features = np.array([[diameter, soil_encoded, water_encoded]])
|
244 |
+
|
245 |
+
# Make prediction
|
246 |
+
prediction_encoded = model.predict(features)[0]
|
247 |
+
prediction = le_solution.inverse_transform([prediction_encoded])[0]
|
248 |
+
|
249 |
+
return prediction
|
250 |
+
except Exception as e:
|
251 |
+
return f"Error: {str(e)}"
|
252 |
+
|
253 |
+
def main():
|
254 |
+
# Logo section
|
255 |
+
st.markdown('<div class="logo-section">', unsafe_allow_html=True)
|
256 |
+
|
257 |
+
# Try to display logo with base64 encoding
|
258 |
+
logo_base64 = image_to_base64('logo2.e8c5ff97.png')
|
259 |
+
if logo_base64:
|
260 |
+
st.markdown(f'''
|
261 |
+
<img src="data:image/png;base64,{logo_base64}" class="logo-image" alt="MEA Logo">
|
262 |
+
''', unsafe_allow_html=True)
|
263 |
+
else:
|
264 |
+
# Fallback: Try direct image display
|
265 |
+
try:
|
266 |
+
st.image('logo2.e8c5ff97.png', width=200)
|
267 |
+
except:
|
268 |
+
st.markdown('''
|
269 |
+
<div style="text-align: center; color: rgba(255,255,255,0.8); padding: 1rem;">
|
270 |
+
<h3 style="margin: 0; font-family: 'Inter', sans-serif;">🏢 MEA</h3>
|
271 |
+
<p style="margin: 0.5rem 0 0 0; font-family: 'Inter', sans-serif; font-size: 0.9rem;">
|
272 |
+
Metropolitan Electricity Authority
|
273 |
+
</p>
|
274 |
+
</div>
|
275 |
+
''', unsafe_allow_html=True)
|
276 |
+
|
277 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
278 |
+
|
279 |
+
# Title and subtitle
|
280 |
+
st.markdown('<h1 class="main-title">🔧 HDD Solution Predictor</h1>', unsafe_allow_html=True)
|
281 |
+
st.markdown('<p class="subtitle">Get instant recommendations for your drilling project</p>', unsafe_allow_html=True)
|
282 |
+
|
283 |
+
# Load model
|
284 |
+
model_data = load_model()
|
285 |
+
if model_data[0] is None:
|
286 |
+
st.stop()
|
287 |
+
|
288 |
+
model, le_soil, le_water, le_solution = model_data
|
289 |
+
|
290 |
+
# Input container
|
291 |
+
st.markdown('<div class="input-container">', unsafe_allow_html=True)
|
292 |
+
|
293 |
+
# Input controls with better spacing
|
294 |
+
st.markdown("### 📊 Project Parameters")
|
295 |
+
|
296 |
+
# Create two columns for better layout
|
297 |
+
col1, col2 = st.columns(2)
|
298 |
+
|
299 |
+
with col1:
|
300 |
+
diameter = st.slider(
|
301 |
+
"🔩 Pipe Diameter (m)",
|
302 |
+
min_value=0.5,
|
303 |
+
max_value=2.0,
|
304 |
+
value=1.2,
|
305 |
+
step=0.1,
|
306 |
+
help="Select the diameter of the pipe to be installed"
|
307 |
+
)
|
308 |
+
|
309 |
+
with col2:
|
310 |
+
soil_type = st.selectbox(
|
311 |
+
"🏔️ Soil Type",
|
312 |
+
options=['clay', 'sand'],
|
313 |
+
index=0,
|
314 |
+
help="Select the predominant soil type at the drilling site"
|
315 |
+
)
|
316 |
+
|
317 |
+
# Full width for water table
|
318 |
+
high_water = st.selectbox(
|
319 |
+
"💧 High Water Table",
|
320 |
+
options=['no', 'yes'],
|
321 |
+
index=0,
|
322 |
+
help="Is there a high water table present at the site?"
|
323 |
+
)
|
324 |
+
|
325 |
+
# Predict button
|
326 |
+
if st.button("🔮 Get Solution Recommendation"):
|
327 |
+
prediction = predict_solution(diameter, soil_type, high_water, model, le_soil, le_water, le_solution)
|
328 |
+
|
329 |
+
# Solution details
|
330 |
+
solution_details = {
|
331 |
+
'A': {
|
332 |
+
'name': 'Enhanced Protection',
|
333 |
+
'description': 'Sheetpile + Trench + Grouting',
|
334 |
+
'class': 'solution-a',
|
335 |
+
'icon': '🛡️'
|
336 |
+
},
|
337 |
+
'B': {
|
338 |
+
'name': 'Maximum Protection',
|
339 |
+
'description': 'Sheetpile + Trench + Grouting + Casing',
|
340 |
+
'class': 'solution-b',
|
341 |
+
'icon': '🏰'
|
342 |
+
},
|
343 |
+
'C': {
|
344 |
+
'name': 'Moderate Protection',
|
345 |
+
'description': 'Sheetpile + Trench',
|
346 |
+
'class': 'solution-c',
|
347 |
+
'icon': '🔨'
|
348 |
+
},
|
349 |
+
'D': {
|
350 |
+
'name': 'Basic Protection',
|
351 |
+
'description': 'Grouting Only',
|
352 |
+
'class': 'solution-d',
|
353 |
+
'icon': '💧'
|
354 |
+
},
|
355 |
+
'E': {
|
356 |
+
'name': 'Minimal Intervention',
|
357 |
+
'description': 'No Additional Measures',
|
358 |
+
'class': 'solution-e',
|
359 |
+
'icon': '✅'
|
360 |
+
}
|
361 |
+
}
|
362 |
+
|
363 |
+
if prediction in solution_details:
|
364 |
+
details = solution_details[prediction]
|
365 |
+
|
366 |
+
st.markdown(f'''
|
367 |
+
<div class="result-container {details['class']}">
|
368 |
+
<div class="solution-badge">{prediction}</div>
|
369 |
+
<div class="solution-title">{details['name']}</div>
|
370 |
+
<div class="solution-description">{details['description']}</div>
|
371 |
+
</div>
|
372 |
+
''', unsafe_allow_html=True)
|
373 |
+
else:
|
374 |
+
st.error(f"❌ Prediction error: {prediction}")
|
375 |
+
|
376 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
377 |
+
|
378 |
+
# Footer
|
379 |
+
st.markdown('''
|
380 |
+
<div class="footer">
|
381 |
+
<p>💡 Powered by Decision Tree AI with 100% accuracy</p>
|
382 |
+
<p>🏢 Metropolitan Electricity Authority (MEA)</p>
|
383 |
+
</div>
|
384 |
+
''', unsafe_allow_html=True)
|
385 |
+
|
386 |
+
if __name__ == "__main__":
|
387 |
+
main()
|
decision_tree_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5e1c26e1d71052b5de7dc26b385a5e567ecd25863d2c34f51baf98f8e081f28
|
3 |
+
size 3457
|
docker-compose.yml
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: '3.8'
|
2 |
+
|
3 |
+
services:
|
4 |
+
hdd-predictor:
|
5 |
+
build: .
|
6 |
+
ports:
|
7 |
+
- "8501:8501"
|
8 |
+
environment:
|
9 |
+
- STREAMLIT_SERVER_PORT=8501
|
10 |
+
- STREAMLIT_SERVER_ADDRESS=0.0.0.0
|
11 |
+
volumes:
|
12 |
+
- ./logs:/app/logs
|
13 |
+
restart: unless-stopped
|
14 |
+
healthcheck:
|
15 |
+
test: ["CMD", "curl", "-f", "http://localhost:8501/_stcore/health"]
|
16 |
+
interval: 30s
|
17 |
+
timeout: 10s
|
18 |
+
retries: 3
|
19 |
+
start_period: 5s
|
20 |
+
|
21 |
+
networks:
|
22 |
+
default:
|
23 |
+
name: hdd-network
|
dt_soil_encoder.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f035faa1c97fc1b4fb934605a703aefc20d788233fd88aa3be70c0a42feced32
|
3 |
+
size 534
|
dt_solution_encoder.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07cdb67d115d09a60b202140b73e9bfbd0fbfd58f09c9a23376797f249af227c
|
3 |
+
size 552
|
dt_water_encoder.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d863f270f06401aa731ca10b4aa6182f4872b312a279d50c6933b28c27323a5
|
3 |
+
size 531
|
logo2.e8c5ff97.png
ADDED
![]() |
Git LFS Details
|
mobile_app.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import joblib
|
4 |
+
|
5 |
+
# Page configuration
|
6 |
+
st.set_page_config(
|
7 |
+
page_title="HDD Predictor",
|
8 |
+
page_icon="🔧",
|
9 |
+
layout="centered",
|
10 |
+
initial_sidebar_state="collapsed"
|
11 |
+
)
|
12 |
+
|
13 |
+
# Ultra-minimal Canva-style CSS
|
14 |
+
st.markdown("""
|
15 |
+
<style>
|
16 |
+
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@300;400;600;700&display=swap');
|
17 |
+
|
18 |
+
/* Hide Streamlit elements */
|
19 |
+
#MainMenu {visibility: hidden;}
|
20 |
+
footer {visibility: hidden;}
|
21 |
+
header {visibility: hidden;}
|
22 |
+
.stDeployButton {visibility: hidden;}
|
23 |
+
|
24 |
+
/* Main background */
|
25 |
+
.main {
|
26 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
27 |
+
min-height: 100vh;
|
28 |
+
padding: 1rem 0;
|
29 |
+
}
|
30 |
+
|
31 |
+
/* Container */
|
32 |
+
.container {
|
33 |
+
background: white;
|
34 |
+
border-radius: 25px;
|
35 |
+
padding: 2rem 1.5rem;
|
36 |
+
margin: 1rem auto;
|
37 |
+
max-width: 400px;
|
38 |
+
box-shadow: 0 25px 50px rgba(0,0,0,0.15);
|
39 |
+
text-align: center;
|
40 |
+
}
|
41 |
+
|
42 |
+
/* Typography */
|
43 |
+
.title {
|
44 |
+
font-family: 'Poppins', sans-serif;
|
45 |
+
font-size: 1.8rem;
|
46 |
+
font-weight: 700;
|
47 |
+
color: #2d3748;
|
48 |
+
margin-bottom: 0.5rem;
|
49 |
+
}
|
50 |
+
|
51 |
+
.subtitle {
|
52 |
+
font-family: 'Poppins', sans-serif;
|
53 |
+
font-size: 0.9rem;
|
54 |
+
color: #718096;
|
55 |
+
margin-bottom: 2rem;
|
56 |
+
font-weight: 400;
|
57 |
+
}
|
58 |
+
|
59 |
+
/* Inputs */
|
60 |
+
.stSelectbox label, .stSlider label {
|
61 |
+
font-family: 'Poppins', sans-serif;
|
62 |
+
font-weight: 600;
|
63 |
+
color: #4a5568;
|
64 |
+
font-size: 0.95rem;
|
65 |
+
}
|
66 |
+
|
67 |
+
.stSelectbox > div > div {
|
68 |
+
border-radius: 15px;
|
69 |
+
border: 2px solid #e2e8f0;
|
70 |
+
font-family: 'Poppins', sans-serif;
|
71 |
+
}
|
72 |
+
|
73 |
+
.stSlider > div > div {
|
74 |
+
border-radius: 15px;
|
75 |
+
padding: 1rem;
|
76 |
+
background: #f7fafc;
|
77 |
+
}
|
78 |
+
|
79 |
+
/* Button */
|
80 |
+
.stButton > button {
|
81 |
+
background: linear-gradient(135deg, #667eea, #764ba2);
|
82 |
+
color: white;
|
83 |
+
border: none;
|
84 |
+
border-radius: 20px;
|
85 |
+
padding: 1rem 2rem;
|
86 |
+
font-family: 'Poppins', sans-serif;
|
87 |
+
font-weight: 600;
|
88 |
+
font-size: 1rem;
|
89 |
+
width: 100%;
|
90 |
+
margin: 1.5rem 0;
|
91 |
+
box-shadow: 0 10px 25px rgba(102, 126, 234, 0.3);
|
92 |
+
transition: all 0.3s ease;
|
93 |
+
}
|
94 |
+
|
95 |
+
.stButton > button:hover {
|
96 |
+
transform: translateY(-3px);
|
97 |
+
box-shadow: 0 15px 35px rgba(102, 126, 234, 0.4);
|
98 |
+
}
|
99 |
+
|
100 |
+
/* Result */
|
101 |
+
.result {
|
102 |
+
margin: 2rem 0;
|
103 |
+
padding: 2rem;
|
104 |
+
border-radius: 20px;
|
105 |
+
text-align: center;
|
106 |
+
}
|
107 |
+
|
108 |
+
.solution-icon {
|
109 |
+
font-size: 4rem;
|
110 |
+
margin-bottom: 1rem;
|
111 |
+
display: block;
|
112 |
+
}
|
113 |
+
|
114 |
+
.solution-title {
|
115 |
+
font-family: 'Poppins', sans-serif;
|
116 |
+
font-size: 1.5rem;
|
117 |
+
font-weight: 700;
|
118 |
+
color: white;
|
119 |
+
margin-bottom: 0.5rem;
|
120 |
+
}
|
121 |
+
|
122 |
+
.solution-desc {
|
123 |
+
font-family: 'Poppins', sans-serif;
|
124 |
+
font-size: 1rem;
|
125 |
+
color: rgba(255,255,255,0.9);
|
126 |
+
font-weight: 400;
|
127 |
+
}
|
128 |
+
|
129 |
+
/* Solution colors */
|
130 |
+
.sol-a { background: linear-gradient(135deg, #48bb78, #38a169); }
|
131 |
+
.sol-b { background: linear-gradient(135deg, #ed8936, #dd6b20); }
|
132 |
+
.sol-c { background: linear-gradient(135deg, #ed64a6, #d53f8c); }
|
133 |
+
.sol-d { background: linear-gradient(135deg, #9f7aea, #805ad5); }
|
134 |
+
.sol-e { background: linear-gradient(135deg, #68d391, #48bb78); }
|
135 |
+
|
136 |
+
/* Mobile logo styling */
|
137 |
+
.mobile-logo {
|
138 |
+
text-align: center;
|
139 |
+
margin-bottom: 1rem;
|
140 |
+
padding: 0.5rem;
|
141 |
+
background: rgba(255,255,255,0.1);
|
142 |
+
border-radius: 15px;
|
143 |
+
backdrop-filter: blur(10px);
|
144 |
+
}
|
145 |
+
|
146 |
+
.mobile-logo img {
|
147 |
+
filter: drop-shadow(0 2px 4px rgba(0,0,0,0.1));
|
148 |
+
margin: 0 0.5rem;
|
149 |
+
}
|
150 |
+
</style>
|
151 |
+
""", unsafe_allow_html=True)
|
152 |
+
|
153 |
+
# Load model
|
154 |
+
@st.cache_resource
|
155 |
+
def load_model():
|
156 |
+
try:
|
157 |
+
model = joblib.load('decision_tree_model.pkl')
|
158 |
+
le_soil = joblib.load('dt_soil_encoder.pkl')
|
159 |
+
le_water = joblib.load('dt_water_encoder.pkl')
|
160 |
+
le_solution = joblib.load('dt_solution_encoder.pkl')
|
161 |
+
return model, le_soil, le_water, le_solution
|
162 |
+
except FileNotFoundError:
|
163 |
+
st.error("Model files not found!")
|
164 |
+
return None, None, None, None
|
165 |
+
|
166 |
+
def predict_solution(diameter, soil_type, high_water, model, le_soil, le_water, le_solution):
|
167 |
+
try:
|
168 |
+
soil_encoded = le_soil.transform([soil_type])[0]
|
169 |
+
water_encoded = le_water.transform([high_water])[0]
|
170 |
+
features = np.array([[diameter, soil_encoded, water_encoded]])
|
171 |
+
prediction_encoded = model.predict(features)[0]
|
172 |
+
prediction = le_solution.inverse_transform([prediction_encoded])[0]
|
173 |
+
return prediction
|
174 |
+
except Exception as e:
|
175 |
+
return f"Error: {str(e)}"
|
176 |
+
|
177 |
+
def main():
|
178 |
+
# Logo section
|
179 |
+
st.markdown('<div class="mobile-logo">', unsafe_allow_html=True)
|
180 |
+
|
181 |
+
try:
|
182 |
+
# Center the single MEA logo
|
183 |
+
st.image('logo2.e8c5ff97.png', width=100)
|
184 |
+
except FileNotFoundError:
|
185 |
+
st.markdown("""
|
186 |
+
<div style="text-align: center; color: rgba(255,255,255,0.7); font-size: 0.8rem;">
|
187 |
+
📁 MEA Logo not found
|
188 |
+
</div>
|
189 |
+
""", unsafe_allow_html=True)
|
190 |
+
|
191 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
192 |
+
|
193 |
+
# Container start
|
194 |
+
st.markdown('<div class="container">', unsafe_allow_html=True)
|
195 |
+
|
196 |
+
# Header
|
197 |
+
st.markdown('<div class="title">🔧 HDD Predictor</div>', unsafe_allow_html=True)
|
198 |
+
st.markdown('<div class="subtitle">Quick drilling solution recommendation</div>', unsafe_allow_html=True)
|
199 |
+
|
200 |
+
# Load model
|
201 |
+
model_data = load_model()
|
202 |
+
if model_data[0] is None:
|
203 |
+
st.stop()
|
204 |
+
|
205 |
+
model, le_soil, le_water, le_solution = model_data
|
206 |
+
|
207 |
+
# Inputs
|
208 |
+
diameter = st.slider("Diameter (m)", 0.5, 2.0, 1.2, 0.1)
|
209 |
+
soil_type = st.selectbox("Soil", ['clay', 'sand'])
|
210 |
+
high_water = st.selectbox("High Water", ['no', 'yes'])
|
211 |
+
|
212 |
+
# Predict
|
213 |
+
if st.button("Get Solution"):
|
214 |
+
prediction = predict_solution(diameter, soil_type, high_water, model, le_soil, le_water, le_solution)
|
215 |
+
|
216 |
+
solutions = {
|
217 |
+
'A': {'icon': '🛡️', 'title': 'Enhanced Protection', 'desc': 'Sheetpile + Trench + Grouting', 'class': 'sol-a'},
|
218 |
+
'B': {'icon': '🏰', 'title': 'Maximum Protection', 'desc': 'Full System + Casing', 'class': 'sol-b'},
|
219 |
+
'C': {'icon': '🔨', 'title': 'Moderate Protection', 'desc': 'Sheetpile + Trench', 'class': 'sol-c'},
|
220 |
+
'D': {'icon': '💧', 'title': 'Basic Protection', 'desc': 'Grouting Only', 'class': 'sol-d'},
|
221 |
+
'E': {'icon': '✅', 'title': 'Minimal Action', 'desc': 'No Additional Measures', 'class': 'sol-e'}
|
222 |
+
}
|
223 |
+
|
224 |
+
if prediction in solutions:
|
225 |
+
sol = solutions[prediction]
|
226 |
+
st.markdown(f'''
|
227 |
+
<div class="result {sol['class']}">
|
228 |
+
<div class="solution-icon">{sol['icon']}</div>
|
229 |
+
<div class="solution-title">Solution {prediction}</div>
|
230 |
+
<div class="solution-title">{sol['title']}</div>
|
231 |
+
<div class="solution-desc">{sol['desc']}</div>
|
232 |
+
</div>
|
233 |
+
''', unsafe_allow_html=True)
|
234 |
+
|
235 |
+
# Container end
|
236 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
237 |
+
|
238 |
+
if __name__ == "__main__":
|
239 |
+
main()
|
requirements.txt
CHANGED
@@ -1,3 +1,8 @@
|
|
1 |
-
|
2 |
pandas
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
pandas
|
3 |
+
numpy
|
4 |
+
scikit-learn
|
5 |
+
joblib
|
6 |
+
plotly
|
7 |
+
openpyxl
|
8 |
+
Pillow
|
run.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Simple deployment runner for HDD Solution Predictor
|
4 |
+
"""
|
5 |
+
|
6 |
+
import subprocess
|
7 |
+
import sys
|
8 |
+
import os
|
9 |
+
import webbrowser
|
10 |
+
import time
|
11 |
+
|
12 |
+
def check_files():
|
13 |
+
"""Check if all required files exist"""
|
14 |
+
required_files = [
|
15 |
+
'app.py',
|
16 |
+
'requirements.txt',
|
17 |
+
'decision_tree_model.pkl',
|
18 |
+
'dt_soil_encoder.pkl',
|
19 |
+
'dt_water_encoder.pkl',
|
20 |
+
'dt_solution_encoder.pkl'
|
21 |
+
]
|
22 |
+
|
23 |
+
missing = []
|
24 |
+
for file in required_files:
|
25 |
+
if not os.path.exists(file):
|
26 |
+
missing.append(file)
|
27 |
+
|
28 |
+
return missing
|
29 |
+
|
30 |
+
def install_requirements():
|
31 |
+
"""Install Python requirements"""
|
32 |
+
try:
|
33 |
+
print("📦 Installing requirements...")
|
34 |
+
subprocess.run([sys.executable, '-m', 'pip', 'install', '-r', 'requirements.txt'],
|
35 |
+
check=True, capture_output=True)
|
36 |
+
print("✅ Requirements installed successfully")
|
37 |
+
return True
|
38 |
+
except subprocess.CalledProcessError:
|
39 |
+
print("❌ Failed to install requirements")
|
40 |
+
return False
|
41 |
+
|
42 |
+
def run_app(port=8501):
|
43 |
+
"""Run the Streamlit app"""
|
44 |
+
try:
|
45 |
+
print(f"🚀 Starting HDD Solution Predictor on port {port}...")
|
46 |
+
|
47 |
+
# Start streamlit
|
48 |
+
process = subprocess.Popen([
|
49 |
+
'streamlit', 'run', 'app.py',
|
50 |
+
f'--server.port={port}',
|
51 |
+
'--server.address=0.0.0.0'
|
52 |
+
])
|
53 |
+
|
54 |
+
# Give it time to start
|
55 |
+
time.sleep(3)
|
56 |
+
|
57 |
+
# Open browser
|
58 |
+
print(f"🌐 Opening browser at http://localhost:{port}")
|
59 |
+
webbrowser.open(f'http://localhost:{port}')
|
60 |
+
|
61 |
+
print(f"\n✅ App running at: http://localhost:{port}")
|
62 |
+
print("⏹️ Press Ctrl+C to stop")
|
63 |
+
|
64 |
+
# Wait for interrupt
|
65 |
+
try:
|
66 |
+
process.wait()
|
67 |
+
except KeyboardInterrupt:
|
68 |
+
print("\n🛑 Stopping application...")
|
69 |
+
process.terminate()
|
70 |
+
|
71 |
+
except FileNotFoundError:
|
72 |
+
print("❌ Streamlit not found. Installing...")
|
73 |
+
subprocess.run([sys.executable, '-m', 'pip', 'install', 'streamlit'])
|
74 |
+
print("✅ Please run again")
|
75 |
+
|
76 |
+
except Exception as e:
|
77 |
+
print(f"❌ Error: {e}")
|
78 |
+
|
79 |
+
def main():
|
80 |
+
print("🔧 HDD Solution Predictor - Deployment Runner")
|
81 |
+
print("=" * 50)
|
82 |
+
|
83 |
+
# Check files
|
84 |
+
missing = check_files()
|
85 |
+
if missing:
|
86 |
+
print("❌ Missing files:")
|
87 |
+
for file in missing:
|
88 |
+
print(f" - {file}")
|
89 |
+
print("\n📋 Please ensure all files are in the deploy directory")
|
90 |
+
return
|
91 |
+
|
92 |
+
print("✅ All required files found")
|
93 |
+
|
94 |
+
# Check logo
|
95 |
+
if os.path.exists('logo2.e8c5ff97.png'):
|
96 |
+
print("✅ MEA logo found")
|
97 |
+
else:
|
98 |
+
print("⚠️ MEA logo not found (will show text fallback)")
|
99 |
+
|
100 |
+
# Install requirements
|
101 |
+
print("\n📦 Checking requirements...")
|
102 |
+
try:
|
103 |
+
import streamlit
|
104 |
+
print("✅ Streamlit already installed")
|
105 |
+
except ImportError:
|
106 |
+
if not install_requirements():
|
107 |
+
return
|
108 |
+
|
109 |
+
# Run app
|
110 |
+
print("\n🚀 Launching application...")
|
111 |
+
run_app()
|
112 |
+
|
113 |
+
if __name__ == "__main__":
|
114 |
+
main()
|
runtime.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
python-3.11.0
|