File size: 1,669 Bytes
a74f3cd
778f96f
 
 
 
a74f3cd
778f96f
a74f3cd
 
 
 
778f96f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
title: Soil Resistivity Prediction
emoji: πŸš—
colorFrom: blue
colorTo: green
sdk: streamlit
sdk_version: "1.29.0"
app_file: app.py
pinned: false
---

# Resistivity Prediction App

This is a Streamlit web application for predicting resistivity based on input features. The app uses a trained deep learning model with attention mechanism and provides SHAP value explanations for predictions.

## Setup Instructions

1. Create a virtual environment (recommended):
```bash
python -m venv venv
source venv/bin/activate  # On Windows use: venv\Scripts\activate
```

2. Install required packages:
```bash
pip install -r requirements.txt
```

3. Place the following files in the same directory:
- `model.pth` (trained model file)
- `data.xlsx` (dataset file with features and target)

## Running the App

To run the app, use the following command:
```bash
streamlit run app.py
```

The app will be available at http://localhost:8501 by default.

## Usage

1. Enter values for each feature using the input fields
2. Click the "Predict" button
3. View the prediction result and SHAP value explanation

## Files Description

- `app.py`: Main Streamlit application file
- `predict.py`: Contains model architecture and prediction functions
- `requirements.txt`: List of required Python packages
- `model.pth`: Trained model weights (not included, must be added)
- `data.xlsx`: Dataset file (not included, must be added)

## Model Architecture

The model uses a TabularTransformer architecture with:
- Feature embedding layer
- Multi-head attention mechanism
- Fully connected layers for prediction

## Requirements

- Python 3.8+
- Required packages listed in requirements.txt