import torch import numpy as np import pandas as pd import torch.nn as nn class TabularTransformer(nn.Module): def __init__(self, input_dim=7, output_dim=1, embedding_dim=64, num_heads=8, hidden_dim=128): super().__init__() self.embedding = nn.Linear(input_dim, embedding_dim) self.attention = nn.MultiheadAttention(embed_dim=embedding_dim, num_heads=num_heads) self.fc = nn.Sequential( nn.Linear(embedding_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, output_dim) ) def forward(self, x): x = self.embedding(x) x = x.unsqueeze(0) # Add sequence dimension for attention attn_out, _ = self.attention(x, x, x) x = attn_out.squeeze(0) # Remove sequence dimension return self.fc(x) def model_predict(model, X_input, scaler_X, scaler_y): # Convert to tensor X_scaled = scaler_X.transform(X_input) X_tensor = torch.FloatTensor(X_scaled) # Make prediction with torch.no_grad(): scaled_pred = model(X_tensor).numpy() # Inverse transform to get original scale prediction prediction = scaler_y.inverse_transform(scaled_pred) return prediction.flatten()