Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +189 -54
- best_segment.pt +3 -0
app.py
CHANGED
@@ -8,6 +8,7 @@ from PIL import Image
|
|
8 |
import cv2
|
9 |
from ultralytics import YOLO
|
10 |
import os
|
|
|
11 |
from streamlit_image_coordinates import streamlit_image_coordinates
|
12 |
|
13 |
# Set page config
|
@@ -45,7 +46,7 @@ def initialize_models():
|
|
45 |
best_model_path = "best_model_mobilenet_v3_v2.pth"
|
46 |
if not os.path.exists(best_model_path):
|
47 |
st.error(f"Model file not found: {best_model_path}")
|
48 |
-
return None, None, None
|
49 |
|
50 |
if device.type == 'cuda':
|
51 |
model.load_state_dict(torch.load(best_model_path))
|
@@ -53,18 +54,27 @@ def initialize_models():
|
|
53 |
model.load_state_dict(torch.load(best_model_path, map_location=torch.device('cpu')))
|
54 |
model.eval()
|
55 |
|
56 |
-
# Load YOLO model
|
57 |
yolo_model_path = "yolo11s.onnx"
|
58 |
if not os.path.exists(yolo_model_path):
|
59 |
st.error(f"YOLO model file not found: {yolo_model_path}")
|
60 |
-
return device, model, None
|
61 |
|
62 |
yolo_model = YOLO(yolo_model_path)
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
except Exception as e:
|
66 |
st.error(f"Error initializing models: {str(e)}")
|
67 |
-
return None, None, None
|
68 |
|
69 |
def process_image(image, model, device):
|
70 |
# Define image transformations
|
@@ -167,8 +177,31 @@ def merge_overlapping_detections(detections, iou_threshold=0.5):
|
|
167 |
|
168 |
return merged_detections
|
169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
def main():
|
171 |
-
st.title("Train obstruction detection V1")
|
172 |
|
173 |
# Initialize session state
|
174 |
if 'points' not in st.session_state:
|
@@ -177,13 +210,32 @@ def main():
|
|
177 |
st.session_state.protection_area_defined = False
|
178 |
if 'current_step' not in st.session_state:
|
179 |
st.session_state.current_step = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
# Create tabs for the two steps
|
182 |
step1, step2 = st.tabs(["Step 1: Define Protection Area", "Step 2: Detect Objects"])
|
183 |
|
184 |
with step1:
|
185 |
st.header("Step 1: Define Protection Area")
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
# File uploader for protection area definition
|
189 |
setup_image = st.file_uploader("Choose an image for protection area setup", type=['jpg', 'jpeg', 'png'], key="setup_image")
|
@@ -199,57 +251,143 @@ def main():
|
|
199 |
# Create a copy for drawing
|
200 |
draw_image = cv_image.copy()
|
201 |
|
202 |
-
# Instructions
|
203 |
-
st.write("👆 Click directly on the image to add points for the protection area (need 4 points)")
|
204 |
-
st.write("🔄 Click 'Reset Points' to start over")
|
205 |
-
|
206 |
# Reset button
|
207 |
-
if st.button('Reset Points'):
|
208 |
st.session_state.points = []
|
209 |
st.session_state.protection_area_defined = False
|
|
|
|
|
|
|
|
|
|
|
210 |
st.rerun()
|
211 |
|
212 |
-
#
|
213 |
-
if
|
214 |
-
#
|
215 |
-
points
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
cv2.
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
|
229 |
-
|
230 |
-
|
231 |
-
if
|
232 |
-
|
233 |
-
cv2.cvtColor(draw_image, cv2.COLOR_BGR2RGB),
|
234 |
-
key=f"image_coordinates_{len(st.session_state.points)}"
|
235 |
-
)
|
236 |
-
|
237 |
-
if clicked is not None and clicked.get('x') is not None and clicked.get('y') is not None:
|
238 |
-
x, y = clicked['x'], clicked['y']
|
239 |
-
if 0 <= x < width and 0 <= y < height:
|
240 |
-
st.session_state.points.append([x, y])
|
241 |
-
if len(st.session_state.points) == 4:
|
242 |
-
st.session_state.protection_area_defined = True
|
243 |
-
st.rerun()
|
244 |
else:
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
with step2:
|
255 |
st.header("Step 2: Detect Objects")
|
@@ -264,9 +402,6 @@ def main():
|
|
264 |
detection_image = st.file_uploader("Choose an image for detection", type=['jpg', 'jpeg', 'png'], key="detection_image")
|
265 |
|
266 |
if detection_image is not None:
|
267 |
-
# Initialize models
|
268 |
-
device, model, yolo_model = initialize_models()
|
269 |
-
|
270 |
if device is None or model is None:
|
271 |
st.error("Failed to initialize models. Please check the error messages above.")
|
272 |
return
|
|
|
8 |
import cv2
|
9 |
from ultralytics import YOLO
|
10 |
import os
|
11 |
+
import random
|
12 |
from streamlit_image_coordinates import streamlit_image_coordinates
|
13 |
|
14 |
# Set page config
|
|
|
46 |
best_model_path = "best_model_mobilenet_v3_v2.pth"
|
47 |
if not os.path.exists(best_model_path):
|
48 |
st.error(f"Model file not found: {best_model_path}")
|
49 |
+
return None, None, None, None
|
50 |
|
51 |
if device.type == 'cuda':
|
52 |
model.load_state_dict(torch.load(best_model_path))
|
|
|
54 |
model.load_state_dict(torch.load(best_model_path, map_location=torch.device('cpu')))
|
55 |
model.eval()
|
56 |
|
57 |
+
# Load YOLO model for object detection
|
58 |
yolo_model_path = "yolo11s.onnx"
|
59 |
if not os.path.exists(yolo_model_path):
|
60 |
st.error(f"YOLO model file not found: {yolo_model_path}")
|
61 |
+
return device, model, None, None
|
62 |
|
63 |
yolo_model = YOLO(yolo_model_path)
|
64 |
+
|
65 |
+
# Load YOLO segmentation model
|
66 |
+
seg_model_path = "best_segment.pt"
|
67 |
+
if not os.path.exists(seg_model_path):
|
68 |
+
st.error(f"YOLO segmentation model file not found: {seg_model_path}")
|
69 |
+
return device, model, yolo_model, None
|
70 |
+
|
71 |
+
seg_model = YOLO(seg_model_path)
|
72 |
+
|
73 |
+
return device, model, yolo_model, seg_model
|
74 |
|
75 |
except Exception as e:
|
76 |
st.error(f"Error initializing models: {str(e)}")
|
77 |
+
return None, None, None, None
|
78 |
|
79 |
def process_image(image, model, device):
|
80 |
# Define image transformations
|
|
|
177 |
|
178 |
return merged_detections
|
179 |
|
180 |
+
def get_segmentation_masks(image, seg_model, conf_threshold=0.25):
|
181 |
+
"""Get segmentation masks from YOLO segmentation model."""
|
182 |
+
results = seg_model(image, conf=conf_threshold)
|
183 |
+
|
184 |
+
masks = []
|
185 |
+
if results and len(results) > 0 and results[0].masks is not None:
|
186 |
+
for i, mask in enumerate(results[0].masks.xy):
|
187 |
+
class_id = int(results[0].boxes.cls[i])
|
188 |
+
class_name = results[0].names[class_id]
|
189 |
+
confidence = float(results[0].boxes.conf[i])
|
190 |
+
|
191 |
+
# Convert mask to numpy array
|
192 |
+
mask_np = np.array(mask, dtype=np.int32)
|
193 |
+
|
194 |
+
masks.append({
|
195 |
+
'mask': mask_np,
|
196 |
+
'class': class_name,
|
197 |
+
'confidence': confidence,
|
198 |
+
'class_id': class_id
|
199 |
+
})
|
200 |
+
|
201 |
+
return masks, results
|
202 |
+
|
203 |
def main():
|
204 |
+
st.title("Train obstruction detection V1.2")
|
205 |
|
206 |
# Initialize session state
|
207 |
if 'points' not in st.session_state:
|
|
|
210 |
st.session_state.protection_area_defined = False
|
211 |
if 'current_step' not in st.session_state:
|
212 |
st.session_state.current_step = 1
|
213 |
+
if 'protection_method' not in st.session_state:
|
214 |
+
st.session_state.protection_method = "manual"
|
215 |
+
if 'segmentation_masks' not in st.session_state:
|
216 |
+
st.session_state.segmentation_masks = []
|
217 |
+
if 'selected_mask_index' not in st.session_state:
|
218 |
+
st.session_state.selected_mask_index = -1
|
219 |
+
|
220 |
+
# Initialize models
|
221 |
+
device, model, yolo_model, seg_model = initialize_models()
|
222 |
|
223 |
# Create tabs for the two steps
|
224 |
step1, step2 = st.tabs(["Step 1: Define Protection Area", "Step 2: Detect Objects"])
|
225 |
|
226 |
with step1:
|
227 |
st.header("Step 1: Define Protection Area")
|
228 |
+
|
229 |
+
# Method selection
|
230 |
+
method = st.radio(
|
231 |
+
"Select method to define protection area:",
|
232 |
+
["Manual (Click 4 points)", "Automatic Segmentation (Select a segment)"],
|
233 |
+
index=0 if st.session_state.protection_method == "manual" else 1,
|
234 |
+
key="method_selection"
|
235 |
+
)
|
236 |
+
|
237 |
+
# Update protection method in session state
|
238 |
+
st.session_state.protection_method = "manual" if method == "Manual (Click 4 points)" else "yolo"
|
239 |
|
240 |
# File uploader for protection area definition
|
241 |
setup_image = st.file_uploader("Choose an image for protection area setup", type=['jpg', 'jpeg', 'png'], key="setup_image")
|
|
|
251 |
# Create a copy for drawing
|
252 |
draw_image = cv_image.copy()
|
253 |
|
|
|
|
|
|
|
|
|
254 |
# Reset button
|
255 |
+
if st.button('Reset Points/Selection'):
|
256 |
st.session_state.points = []
|
257 |
st.session_state.protection_area_defined = False
|
258 |
+
st.session_state.selected_mask_index = -1
|
259 |
+
# Clear segmentation masks to force re-detection
|
260 |
+
st.session_state.segmentation_masks = []
|
261 |
+
if 'mask_colors' in st.session_state:
|
262 |
+
del st.session_state.mask_colors
|
263 |
st.rerun()
|
264 |
|
265 |
+
# Manual method
|
266 |
+
if st.session_state.protection_method == "manual":
|
267 |
+
# Instructions
|
268 |
+
st.write("👆 Click directly on the image to add points for the protection area (need 4 points)")
|
269 |
+
|
270 |
+
# Display current image with points
|
271 |
+
if len(st.session_state.points) > 0:
|
272 |
+
# Draw existing points and lines
|
273 |
+
points = np.array(st.session_state.points, dtype=np.int32)
|
274 |
+
cv2.polylines(draw_image, [points],
|
275 |
+
True if len(points) == 4 else False,
|
276 |
+
(0, 255, 0), 2)
|
277 |
+
# Draw points with numbers
|
278 |
+
for i, point in enumerate(points):
|
279 |
+
cv2.circle(draw_image, tuple(point), 5, (0, 0, 255), -1)
|
280 |
+
cv2.putText(draw_image, str(i+1),
|
281 |
+
(point[0]+10, point[1]+10),
|
282 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
|
283 |
+
|
284 |
+
# Create columns for better layout
|
285 |
+
col1, col2 = st.columns([4, 1])
|
286 |
+
|
287 |
+
with col1:
|
288 |
+
# Display the image and handle click events
|
289 |
+
if len(st.session_state.points) < 4:
|
290 |
+
clicked = streamlit_image_coordinates(
|
291 |
+
cv2.cvtColor(draw_image, cv2.COLOR_BGR2RGB),
|
292 |
+
key=f"image_coordinates_{len(st.session_state.points)}"
|
293 |
+
)
|
294 |
+
|
295 |
+
if clicked is not None and clicked.get('x') is not None and clicked.get('y') is not None:
|
296 |
+
x, y = clicked['x'], clicked['y']
|
297 |
+
if 0 <= x < width and 0 <= y < height:
|
298 |
+
st.session_state.points.append([x, y])
|
299 |
+
if len(st.session_state.points) == 4:
|
300 |
+
st.session_state.protection_area_defined = True
|
301 |
+
st.rerun()
|
302 |
+
else:
|
303 |
+
st.image(cv2.cvtColor(draw_image, cv2.COLOR_BGR2RGB))
|
304 |
+
|
305 |
+
with col2:
|
306 |
+
st.write(f"Points: {len(st.session_state.points)}/4")
|
307 |
+
if len(st.session_state.points) > 0:
|
308 |
+
st.write("Current Points:")
|
309 |
+
for i, point in enumerate(st.session_state.points):
|
310 |
+
st.write(f"Point {i+1}: ({point[0]}, {point[1]})")
|
311 |
|
312 |
+
# YOLO Segmentation method
|
313 |
+
else:
|
314 |
+
if seg_model is None:
|
315 |
+
st.error("YOLO segmentation model not loaded. Please check the error messages above.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
else:
|
317 |
+
# Always run segmentation when in YOLO mode to ensure fresh results
|
318 |
+
with st.spinner("Running segmentation..."):
|
319 |
+
masks, results = get_segmentation_masks(cv_image, seg_model)
|
320 |
+
st.session_state.segmentation_masks = masks
|
321 |
+
|
322 |
+
# Generate random colors for each mask
|
323 |
+
st.session_state.mask_colors = []
|
324 |
+
for _ in range(len(masks)):
|
325 |
+
st.session_state.mask_colors.append([random.randint(0, 255) for _ in range(3)])
|
326 |
+
|
327 |
+
# Display segmentation results
|
328 |
+
if len(st.session_state.segmentation_masks) > 0:
|
329 |
+
# Create a copy of the image for drawing masks
|
330 |
+
mask_image = cv_image.copy()
|
331 |
+
|
332 |
+
# Draw all masks with transparency
|
333 |
+
for i, mask_data in enumerate(st.session_state.segmentation_masks):
|
334 |
+
mask = mask_data['mask']
|
335 |
+
color = st.session_state.mask_colors[i]
|
336 |
+
|
337 |
+
# Create a blank image for this mask
|
338 |
+
mask_overlay = np.zeros_like(mask_image)
|
339 |
+
|
340 |
+
# Draw the filled polygon
|
341 |
+
cv2.fillPoly(mask_overlay, [mask], color)
|
342 |
+
|
343 |
+
# Add the mask to the image with transparency
|
344 |
+
alpha = 0.4
|
345 |
+
if i == st.session_state.selected_mask_index:
|
346 |
+
alpha = 0.7 # Make selected mask more visible
|
347 |
+
|
348 |
+
mask_image = cv2.addWeighted(mask_image, 1, mask_overlay, alpha, 0)
|
349 |
+
|
350 |
+
# Draw the polygon outline
|
351 |
+
line_thickness = 2
|
352 |
+
if i == st.session_state.selected_mask_index:
|
353 |
+
line_thickness = 4 # Make selected mask outline thicker
|
354 |
+
|
355 |
+
cv2.polylines(mask_image, [mask], True, color, line_thickness)
|
356 |
+
|
357 |
+
# Add class label
|
358 |
+
class_name = mask_data['class']
|
359 |
+
confidence = mask_data['confidence']
|
360 |
+
label = f"{class_name} {confidence:.2f}"
|
361 |
+
|
362 |
+
# Find a good position for the label (use the top-left point of the mask)
|
363 |
+
label_pos = (int(mask[0][0]), int(mask[0][1]) - 10)
|
364 |
+
put_text_with_background(mask_image, label, label_pos)
|
365 |
+
|
366 |
+
# Display the image with masks
|
367 |
+
col1, col2 = st.columns([4, 1])
|
368 |
+
|
369 |
+
with col1:
|
370 |
+
st.image(cv2.cvtColor(mask_image, cv2.COLOR_BGR2RGB))
|
371 |
+
|
372 |
+
with col2:
|
373 |
+
st.write("Available Segments:")
|
374 |
+
for i, mask_data in enumerate(st.session_state.segmentation_masks):
|
375 |
+
if st.button(f"Select {mask_data['class']} #{i+1}", key=f"select_mask_{i}"):
|
376 |
+
st.session_state.selected_mask_index = i
|
377 |
+
# Use the selected mask as protection area
|
378 |
+
st.session_state.points = mask_data['mask'].tolist()
|
379 |
+
st.session_state.protection_area_defined = True
|
380 |
+
st.rerun()
|
381 |
+
|
382 |
+
# Add a re-detect button
|
383 |
+
if st.button("Re-detect Segments"):
|
384 |
+
st.session_state.segmentation_masks = []
|
385 |
+
if 'mask_colors' in st.session_state:
|
386 |
+
del st.session_state.mask_colors
|
387 |
+
st.session_state.selected_mask_index = -1
|
388 |
+
st.rerun()
|
389 |
+
else:
|
390 |
+
st.warning("No segmentation masks found in the image. Try another image or use manual method.")
|
391 |
|
392 |
with step2:
|
393 |
st.header("Step 2: Detect Objects")
|
|
|
402 |
detection_image = st.file_uploader("Choose an image for detection", type=['jpg', 'jpeg', 'png'], key="detection_image")
|
403 |
|
404 |
if detection_image is not None:
|
|
|
|
|
|
|
405 |
if device is None or model is None:
|
406 |
st.error("Failed to initialize models. Please check the error messages above.")
|
407 |
return
|
best_segment.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1b6f8dceeec2d8116f20b0d73084c5f9e33859bfd8f4891ef7e2a46cc674ac8
|
3 |
+
size 20521693
|