Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -54,7 +54,7 @@ def initialize_models():
|
|
54 |
model.eval()
|
55 |
|
56 |
# Load YOLO model
|
57 |
-
yolo_model_path = "yolo11s.onnx"
|
58 |
if not os.path.exists(yolo_model_path):
|
59 |
st.error(f"YOLO model file not found: {yolo_model_path}")
|
60 |
return device, model, None
|
@@ -168,197 +168,188 @@ def merge_overlapping_detections(detections, iou_threshold=0.5):
|
|
168 |
return merged_detections
|
169 |
|
170 |
def main():
|
171 |
-
st.title("
|
172 |
|
173 |
-
# Initialize session state
|
174 |
if 'points' not in st.session_state:
|
175 |
st.session_state.points = []
|
176 |
-
if '
|
177 |
-
st.session_state.
|
|
|
|
|
178 |
|
179 |
-
#
|
180 |
-
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
image
|
185 |
|
186 |
-
#
|
187 |
-
|
188 |
-
height, width = cv_image.shape[:2]
|
189 |
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
st.session_state.processing_done = False
|
201 |
-
st.rerun()
|
202 |
|
203 |
-
|
204 |
-
if len(st.session_state.points) > 0:
|
205 |
-
# Draw existing points and lines
|
206 |
-
points = np.array(st.session_state.points, dtype=np.int32)
|
207 |
-
cv2.polylines(draw_image, [points],
|
208 |
-
True if len(points) == 4 else False,
|
209 |
-
(0, 255, 0), 2)
|
210 |
-
# Draw points with numbers
|
211 |
-
for i, point in enumerate(points):
|
212 |
-
cv2.circle(draw_image, tuple(point), 5, (0, 0, 255), -1)
|
213 |
-
cv2.putText(draw_image, str(i+1),
|
214 |
-
(point[0]+10, point[1]+10),
|
215 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
|
216 |
|
217 |
-
#
|
218 |
-
|
219 |
|
220 |
-
|
221 |
-
#
|
222 |
-
|
223 |
-
|
224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
-
#
|
227 |
-
|
228 |
-
cv2.cvtColor(draw_image, cv2.COLOR_BGR2RGB),
|
229 |
-
key=f"image_coordinates_{len(st.session_state.points)}"
|
230 |
-
)
|
231 |
|
232 |
-
#
|
233 |
-
|
234 |
-
|
235 |
-
if
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
(point[0]+10, point[1]+10),
|
251 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
|
252 |
-
|
253 |
-
# Rerun to update the display
|
254 |
-
st.rerun()
|
255 |
-
else:
|
256 |
-
# Just display the image if we're done adding points
|
257 |
-
st.image(cv2.cvtColor(draw_image, cv2.COLOR_BGR2RGB), use_column_width=True)
|
258 |
-
|
259 |
-
with col2:
|
260 |
-
# Show progress
|
261 |
-
st.write(f"Points: {len(st.session_state.points)}/4")
|
262 |
-
|
263 |
-
# Show current points
|
264 |
-
if len(st.session_state.points) > 0:
|
265 |
-
st.write("Current Points:")
|
266 |
-
for i, point in enumerate(st.session_state.points):
|
267 |
-
st.write(f"Point {i+1}: ({point[0]}, {point[1]})")
|
268 |
-
|
269 |
-
# Add option to remove last point
|
270 |
-
if st.button("Remove Last Point"):
|
271 |
-
st.session_state.points.pop()
|
272 |
-
st.rerun()
|
273 |
-
|
274 |
-
# Process button
|
275 |
-
if len(st.session_state.points) == 4 and not st.session_state.processing_done:
|
276 |
-
st.write("β
Protection area defined! Click 'Process Detection' to continue.")
|
277 |
-
if st.button('Process Detection', type='primary'):
|
278 |
-
st.session_state.processing_done = True
|
279 |
|
280 |
-
#
|
281 |
-
|
282 |
|
283 |
-
|
284 |
-
|
285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
-
#
|
288 |
-
|
|
|
289 |
|
290 |
-
|
291 |
-
|
292 |
-
st.write(f"Red Light Detected: {is_red_light}")
|
293 |
-
st.write(f"Red Light Probability: {red_light_prob:.2%}")
|
294 |
-
st.write(f"No Red Light Probability: {no_red_light_prob:.2%}")
|
295 |
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
if result.boxes is not None:
|
307 |
-
for box in result.boxes:
|
308 |
-
class_id = int(box.cls[0])
|
309 |
-
class_name = yolo_model.names[class_id]
|
310 |
-
|
311 |
-
if class_name in ALLOWED_CLASSES:
|
312 |
-
bbox = box.xyxy[0].cpu().numpy()
|
313 |
-
|
314 |
-
if is_bbox_in_area(bbox, st.session_state.points, cv_image.shape):
|
315 |
-
confidence = float(box.conf[0])
|
316 |
-
detection_results.append({
|
317 |
-
'class': class_name,
|
318 |
-
'confidence': confidence,
|
319 |
-
'bbox': bbox
|
320 |
-
})
|
321 |
-
|
322 |
-
# Merge overlapping detections
|
323 |
-
detection_results = merge_overlapping_detections(detection_results, iou_threshold=0.5)
|
324 |
-
|
325 |
-
# Draw detections
|
326 |
-
for det in detection_results:
|
327 |
-
bbox = det['bbox']
|
328 |
-
# Draw detection box
|
329 |
-
cv2.rectangle(cv_image,
|
330 |
-
(int(bbox[0]), int(bbox[1])),
|
331 |
-
(int(bbox[2]), int(bbox[3])),
|
332 |
-
(0, 0, 255), 2)
|
333 |
-
|
334 |
-
# Add label
|
335 |
-
text = f"{det['class']}: {det['confidence']:.2%}"
|
336 |
-
put_text_with_background(cv_image, text,
|
337 |
-
(int(bbox[0]), int(bbox[1]) - 10))
|
338 |
-
|
339 |
-
# Add status text
|
340 |
-
status_text = f"Red Light: DETECTED ({red_light_prob:.1%})"
|
341 |
-
put_text_with_background(cv_image, status_text, (10, 30), font_scale=1.0, thickness=2)
|
342 |
-
|
343 |
-
count_text = f"Objects in Protection Area: {len(detection_results)}"
|
344 |
-
put_text_with_background(cv_image, count_text, (10, 70), font_scale=0.8)
|
345 |
-
|
346 |
-
# Display results
|
347 |
-
st.image(cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB))
|
348 |
-
|
349 |
-
# Display detections
|
350 |
-
if detection_results:
|
351 |
-
st.write("\nπ― Detected Objects in Protection Area:")
|
352 |
-
for i, det in enumerate(detection_results, 1):
|
353 |
-
st.write(f"\nObject {i}:")
|
354 |
-
st.write(f"- Class: {det['class']}")
|
355 |
-
st.write(f"- Confidence: {det['confidence']:.2%}")
|
356 |
-
else:
|
357 |
-
st.write("\nNo objects detected in protection area")
|
358 |
else:
|
359 |
-
|
360 |
-
|
361 |
-
|
|
|
|
|
362 |
|
363 |
if __name__ == "__main__":
|
364 |
main()
|
|
|
54 |
model.eval()
|
55 |
|
56 |
# Load YOLO model
|
57 |
+
yolo_model_path = "yolo11s.onnx"
|
58 |
if not os.path.exists(yolo_model_path):
|
59 |
st.error(f"YOLO model file not found: {yolo_model_path}")
|
60 |
return device, model, None
|
|
|
168 |
return merged_detections
|
169 |
|
170 |
def main():
|
171 |
+
st.title("Train obstruciton detection V1")
|
172 |
|
173 |
+
# Initialize session state
|
174 |
if 'points' not in st.session_state:
|
175 |
st.session_state.points = []
|
176 |
+
if 'protection_area_defined' not in st.session_state:
|
177 |
+
st.session_state.protection_area_defined = False
|
178 |
+
if 'current_step' not in st.session_state:
|
179 |
+
st.session_state.current_step = 1
|
180 |
|
181 |
+
# Create tabs for the two steps
|
182 |
+
step1, step2 = st.tabs(["Step 1: Define Protection Area", "Step 2: Detect Objects"])
|
183 |
|
184 |
+
with step1:
|
185 |
+
st.header("Step 1: Define Protection Area")
|
186 |
+
st.write("Upload an image and define the protection area by clicking 4 points")
|
187 |
|
188 |
+
# File uploader for protection area definition
|
189 |
+
setup_image = st.file_uploader("Choose an image for protection area setup", type=['jpg', 'jpeg', 'png'], key="setup_image")
|
|
|
190 |
|
191 |
+
if setup_image is not None:
|
192 |
+
# Convert uploaded file to PIL Image
|
193 |
+
image = Image.open(setup_image).convert('RGB')
|
194 |
+
|
195 |
+
# Convert to OpenCV format for drawing
|
196 |
+
cv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
197 |
+
height, width = cv_image.shape[:2]
|
198 |
+
|
199 |
+
# Create a copy for drawing
|
200 |
+
draw_image = cv_image.copy()
|
201 |
+
|
202 |
+
# Instructions
|
203 |
+
st.write("π Click directly on the image to add points for the protection area (need 4 points)")
|
204 |
+
st.write("π Click 'Reset Points' to start over")
|
205 |
+
|
206 |
+
# Reset button
|
207 |
+
if st.button('Reset Points'):
|
208 |
+
st.session_state.points = []
|
209 |
+
st.session_state.protection_area_defined = False
|
210 |
+
st.rerun()
|
211 |
+
|
212 |
+
# Display current image with points
|
213 |
+
if len(st.session_state.points) > 0:
|
214 |
+
# Draw existing points and lines
|
215 |
+
points = np.array(st.session_state.points, dtype=np.int32)
|
216 |
+
cv2.polylines(draw_image, [points],
|
217 |
+
True if len(points) == 4 else False,
|
218 |
+
(0, 255, 0), 2)
|
219 |
+
# Draw points with numbers
|
220 |
+
for i, point in enumerate(points):
|
221 |
+
cv2.circle(draw_image, tuple(point), 5, (0, 0, 255), -1)
|
222 |
+
cv2.putText(draw_image, str(i+1),
|
223 |
+
(point[0]+10, point[1]+10),
|
224 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
|
225 |
+
|
226 |
+
# Create columns for better layout
|
227 |
+
col1, col2 = st.columns([4, 1])
|
228 |
+
|
229 |
+
with col1:
|
230 |
+
# Display the image and handle click events
|
231 |
+
if len(st.session_state.points) < 4:
|
232 |
+
clicked = streamlit_image_coordinates(
|
233 |
+
cv2.cvtColor(draw_image, cv2.COLOR_BGR2RGB),
|
234 |
+
key=f"image_coordinates_{len(st.session_state.points)}"
|
235 |
+
)
|
236 |
+
|
237 |
+
if clicked is not None and clicked.get('x') is not None and clicked.get('y') is not None:
|
238 |
+
x, y = clicked['x'], clicked['y']
|
239 |
+
if 0 <= x < width and 0 <= y < height:
|
240 |
+
st.session_state.points.append([x, y])
|
241 |
+
if len(st.session_state.points) == 4:
|
242 |
+
st.session_state.protection_area_defined = True
|
243 |
+
st.rerun()
|
244 |
+
else:
|
245 |
+
st.image(cv2.cvtColor(draw_image, cv2.COLOR_BGR2RGB))
|
246 |
+
|
247 |
+
with col2:
|
248 |
+
st.write(f"Points: {len(st.session_state.points)}/4")
|
249 |
+
if len(st.session_state.points) > 0:
|
250 |
+
st.write("Current Points:")
|
251 |
+
for i, point in enumerate(st.session_state.points):
|
252 |
+
st.write(f"Point {i+1}: ({point[0]}, {point[1]})")
|
253 |
+
|
254 |
+
with step2:
|
255 |
+
st.header("Step 2: Detect Objects")
|
256 |
|
257 |
+
if not st.session_state.protection_area_defined:
|
258 |
+
st.warning("β οΈ Please complete Step 1 first to define the protection area.")
|
259 |
+
return
|
|
|
|
|
260 |
|
261 |
+
st.write("Upload images to detect red lights and objects in the protection area")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
+
# File uploader for detection
|
264 |
+
detection_image = st.file_uploader("Choose an image for detection", type=['jpg', 'jpeg', 'png'], key="detection_image")
|
265 |
|
266 |
+
if detection_image is not None:
|
267 |
+
# Initialize models
|
268 |
+
device, model, yolo_model = initialize_models()
|
269 |
+
|
270 |
+
if device is None or model is None:
|
271 |
+
st.error("Failed to initialize models. Please check the error messages above.")
|
272 |
+
return
|
273 |
+
|
274 |
+
# Load and process image
|
275 |
+
image = Image.open(detection_image).convert('RGB')
|
276 |
+
cv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
277 |
+
|
278 |
+
# Process image for red light detection
|
279 |
+
is_red_light, red_light_prob, no_red_light_prob = process_image(image, model, device)
|
280 |
+
|
281 |
+
# Display red light detection results
|
282 |
+
st.write("\nπ₯ Red Light Detection Results:")
|
283 |
+
st.write(f"Red Light Detected: {is_red_light}")
|
284 |
+
st.write(f"Red Light Probability: {red_light_prob:.2%}")
|
285 |
+
st.write(f"No Red Light Probability: {no_red_light_prob:.2%}")
|
286 |
+
|
287 |
+
if is_red_light and yolo_model is not None:
|
288 |
+
# Draw protection area
|
289 |
+
cv2.polylines(cv_image, [np.array(st.session_state.points)], True, (0, 255, 0), 2)
|
290 |
|
291 |
+
# Run YOLO detection
|
292 |
+
results = yolo_model(cv_image, conf=0.25)
|
|
|
|
|
|
|
293 |
|
294 |
+
# Process detections
|
295 |
+
detection_results = []
|
296 |
+
for result in results:
|
297 |
+
if result.boxes is not None:
|
298 |
+
for box in result.boxes:
|
299 |
+
class_id = int(box.cls[0])
|
300 |
+
class_name = yolo_model.names[class_id]
|
301 |
+
|
302 |
+
if class_name in ALLOWED_CLASSES:
|
303 |
+
bbox = box.xyxy[0].cpu().numpy()
|
304 |
+
|
305 |
+
if is_bbox_in_area(bbox, st.session_state.points, cv_image.shape):
|
306 |
+
confidence = float(box.conf[0])
|
307 |
+
detection_results.append({
|
308 |
+
'class': class_name,
|
309 |
+
'confidence': confidence,
|
310 |
+
'bbox': bbox
|
311 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
|
313 |
+
# Merge overlapping detections
|
314 |
+
detection_results = merge_overlapping_detections(detection_results, iou_threshold=0.5)
|
315 |
|
316 |
+
# Draw detections
|
317 |
+
for det in detection_results:
|
318 |
+
bbox = det['bbox']
|
319 |
+
# Draw detection box
|
320 |
+
cv2.rectangle(cv_image,
|
321 |
+
(int(bbox[0]), int(bbox[1])),
|
322 |
+
(int(bbox[2]), int(bbox[3])),
|
323 |
+
(0, 0, 255), 2)
|
324 |
+
|
325 |
+
# Add label
|
326 |
+
text = f"{det['class']}: {det['confidence']:.2%}"
|
327 |
+
put_text_with_background(cv_image, text,
|
328 |
+
(int(bbox[0]), int(bbox[1]) - 10))
|
329 |
|
330 |
+
# Add status text
|
331 |
+
status_text = f"Red Light: DETECTED ({red_light_prob:.1%})"
|
332 |
+
put_text_with_background(cv_image, status_text, (10, 30), font_scale=1.0, thickness=2)
|
333 |
|
334 |
+
count_text = f"Objects in Protection Area: {len(detection_results)}"
|
335 |
+
put_text_with_background(cv_image, count_text, (10, 70), font_scale=0.8)
|
|
|
|
|
|
|
336 |
|
337 |
+
# Display results
|
338 |
+
st.image(cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB))
|
339 |
+
|
340 |
+
# Display detections
|
341 |
+
if detection_results:
|
342 |
+
st.write("\nπ― Detected Objects in Protection Area:")
|
343 |
+
for i, det in enumerate(detection_results, 1):
|
344 |
+
st.write(f"\nObject {i}:")
|
345 |
+
st.write(f"- Class: {det['class']}")
|
346 |
+
st.write(f"- Confidence: {det['confidence']:.2%}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
else:
|
348 |
+
st.write("\nNo objects detected in protection area")
|
349 |
+
else:
|
350 |
+
status_text = f"Red Light: NOT DETECTED ({red_light_prob:.1%})"
|
351 |
+
put_text_with_background(cv_image, status_text, (10, 30), font_scale=1.0, thickness=2)
|
352 |
+
st.image(cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB))
|
353 |
|
354 |
if __name__ == "__main__":
|
355 |
main()
|