Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +1469 -0
- requirements.txt +28 -0
app.py
ADDED
@@ -0,0 +1,1469 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import requests
|
5 |
+
import json
|
6 |
+
import base64
|
7 |
+
from PIL import Image
|
8 |
+
import io
|
9 |
+
import os
|
10 |
+
from dotenv import load_dotenv
|
11 |
+
from collections import defaultdict
|
12 |
+
import time
|
13 |
+
from skimage.metrics import structural_similarity as ssim
|
14 |
+
|
15 |
+
# Load environment variables
|
16 |
+
load_dotenv()
|
17 |
+
|
18 |
+
# Define API endpoint from environment variable
|
19 |
+
API_URL = os.getenv("API_URL", "http://122.155.170.240:81")
|
20 |
+
print(f"Using API URL: {API_URL}")
|
21 |
+
DEFAULT_CONFIDENCE = float(os.getenv("DEFAULT_CONFIDENCE_THRESHOLD", "0.25"))
|
22 |
+
|
23 |
+
def calculate_iou(box1, box2):
|
24 |
+
"""Calculate Intersection over Union (IoU) between two bounding boxes"""
|
25 |
+
x1 = max(box1[0], box2[0])
|
26 |
+
y1 = max(box1[1], box2[1])
|
27 |
+
x2 = min(box1[2], box2[2])
|
28 |
+
y2 = min(box1[3], box2[3])
|
29 |
+
|
30 |
+
intersection = max(0, x2 - x1) * max(0, y2 - y1)
|
31 |
+
area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
|
32 |
+
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
|
33 |
+
union = area1 + area2 - intersection
|
34 |
+
|
35 |
+
return intersection / union if union > 0 else 0
|
36 |
+
|
37 |
+
def calculate_bbox_similarity(bbox1, bbox2):
|
38 |
+
"""Calculate similarity between two bounding boxes using IoU and center distance"""
|
39 |
+
try:
|
40 |
+
# Calculate IoU
|
41 |
+
iou = calculate_iou(bbox1, bbox2)
|
42 |
+
|
43 |
+
# Calculate center distance
|
44 |
+
center1 = get_box_center(bbox1)
|
45 |
+
center2 = get_box_center(bbox2)
|
46 |
+
|
47 |
+
if center1 is None or center2 is None:
|
48 |
+
return 0.0
|
49 |
+
|
50 |
+
distance = np.sqrt((center1[0] - center2[0])**2 + (center1[1] - center2[1])**2)
|
51 |
+
|
52 |
+
# Normalize distance based on bbox size
|
53 |
+
bbox_size = max(bbox1[2] - bbox1[0], bbox1[3] - bbox1[1])
|
54 |
+
normalized_distance = distance / max(bbox_size, 1)
|
55 |
+
|
56 |
+
# Combine IoU and distance for final similarity score
|
57 |
+
similarity = iou * 0.7 + max(0, 1 - normalized_distance * 0.3) * 0.3
|
58 |
+
|
59 |
+
return similarity
|
60 |
+
except Exception as e:
|
61 |
+
return 0.0
|
62 |
+
|
63 |
+
def get_box_center(bbox):
|
64 |
+
"""Calculate center point of bounding box"""
|
65 |
+
try:
|
66 |
+
# Handle different bbox formats (x,y,w,h) or (x1,y1,x2,y2)
|
67 |
+
if len(bbox) == 4:
|
68 |
+
if bbox[2] < bbox[0] or bbox[3] < bbox[1]: # If it's x1,y1,x2,y2 format
|
69 |
+
x = (bbox[0] + bbox[2]) / 2
|
70 |
+
y = (bbox[1] + bbox[3]) / 2
|
71 |
+
else: # If it's x,y,w,h format
|
72 |
+
x = bbox[0] + bbox[2]/2
|
73 |
+
y = bbox[1] + bbox[3]/2
|
74 |
+
else:
|
75 |
+
return None
|
76 |
+
return (x, y)
|
77 |
+
except Exception as e:
|
78 |
+
return None
|
79 |
+
|
80 |
+
def calculate_movement(prev_center, curr_center, min_movement=10):
|
81 |
+
"""Calculate if there's significant movement between frames"""
|
82 |
+
try:
|
83 |
+
if prev_center is None or curr_center is None:
|
84 |
+
return False
|
85 |
+
dx = curr_center[0] - prev_center[0]
|
86 |
+
dy = curr_center[1] - prev_center[1]
|
87 |
+
distance = np.sqrt(dx*dx + dy*dy)
|
88 |
+
return distance > min_movement
|
89 |
+
except Exception as e:
|
90 |
+
return False
|
91 |
+
|
92 |
+
def extract_bbox_image(frame, bbox):
|
93 |
+
"""Extract image region from bounding box"""
|
94 |
+
try:
|
95 |
+
if frame is None or len(bbox) != 4:
|
96 |
+
return None
|
97 |
+
|
98 |
+
# Convert bbox to integers and ensure valid coordinates
|
99 |
+
x1, y1, x2, y2 = map(int, bbox)
|
100 |
+
|
101 |
+
# Handle different bbox formats
|
102 |
+
if x2 < x1 or y2 < y1: # If it's x,y,w,h format
|
103 |
+
x1, y1, w, h = bbox
|
104 |
+
x2, y2 = x1 + w, y1 + h
|
105 |
+
|
106 |
+
# Ensure coordinates are within frame bounds
|
107 |
+
h, w = frame.shape[:2]
|
108 |
+
x1 = max(0, min(x1, w-1))
|
109 |
+
y1 = max(0, min(y1, h-1))
|
110 |
+
x2 = max(x1+1, min(x2, w))
|
111 |
+
y2 = max(y1+1, min(y2, h))
|
112 |
+
|
113 |
+
# Extract region
|
114 |
+
bbox_img = frame[y1:y2, x1:x2]
|
115 |
+
|
116 |
+
# Resize to standard size for comparison (64x64)
|
117 |
+
if bbox_img.size > 0:
|
118 |
+
bbox_img = cv2.resize(bbox_img, (64, 64))
|
119 |
+
return bbox_img
|
120 |
+
return None
|
121 |
+
except Exception as e:
|
122 |
+
return None
|
123 |
+
|
124 |
+
def calculate_histogram_similarity(img1, img2):
|
125 |
+
"""Calculate histogram-based similarity between two images"""
|
126 |
+
try:
|
127 |
+
if img1 is None or img2 is None:
|
128 |
+
return 0.0
|
129 |
+
|
130 |
+
# Convert to HSV for better color comparison
|
131 |
+
hsv1 = cv2.cvtColor(img1, cv2.COLOR_BGR2HSV)
|
132 |
+
hsv2 = cv2.cvtColor(img2, cv2.COLOR_BGR2HSV)
|
133 |
+
|
134 |
+
# Calculate histograms
|
135 |
+
hist1 = cv2.calcHist([hsv1], [0, 1, 2], None, [50, 60, 60], [0, 180, 0, 256, 0, 256])
|
136 |
+
hist2 = cv2.calcHist([hsv2], [0, 1, 2], None, [50, 60, 60], [0, 180, 0, 256, 0, 256])
|
137 |
+
|
138 |
+
# Compare histograms using correlation
|
139 |
+
correlation = cv2.compareHist(hist1, hist2, cv2.HISTCMP_CORREL)
|
140 |
+
|
141 |
+
# Normalize to 0-1 range
|
142 |
+
return max(0, correlation)
|
143 |
+
except Exception as e:
|
144 |
+
return 0.0
|
145 |
+
|
146 |
+
def calculate_ssim_similarity(img1, img2):
|
147 |
+
"""Calculate Structural Similarity Index (SSIM) between two images"""
|
148 |
+
try:
|
149 |
+
if img1 is None or img2 is None:
|
150 |
+
return 0.0
|
151 |
+
|
152 |
+
# Convert to grayscale
|
153 |
+
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
|
154 |
+
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
|
155 |
+
|
156 |
+
# Calculate SSIM
|
157 |
+
similarity_index = ssim(gray1, gray2)
|
158 |
+
|
159 |
+
# Normalize to 0-1 range (SSIM can be negative)
|
160 |
+
return max(0, (similarity_index + 1) / 2)
|
161 |
+
except Exception as e:
|
162 |
+
return 0.0
|
163 |
+
|
164 |
+
def calculate_feature_similarity(img1, img2):
|
165 |
+
"""Calculate feature-based similarity using ORB features"""
|
166 |
+
try:
|
167 |
+
if img1 is None or img2 is None:
|
168 |
+
return 0.0
|
169 |
+
|
170 |
+
# Convert to grayscale
|
171 |
+
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
|
172 |
+
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
|
173 |
+
|
174 |
+
# Initialize ORB detector
|
175 |
+
orb = cv2.ORB_create(nfeatures=50)
|
176 |
+
|
177 |
+
# Find keypoints and descriptors
|
178 |
+
kp1, des1 = orb.detectAndCompute(gray1, None)
|
179 |
+
kp2, des2 = orb.detectAndCompute(gray2, None)
|
180 |
+
|
181 |
+
if des1 is None or des2 is None or len(des1) < 5 or len(des2) < 5:
|
182 |
+
return 0.0
|
183 |
+
|
184 |
+
# Match features
|
185 |
+
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
|
186 |
+
matches = bf.match(des1, des2)
|
187 |
+
|
188 |
+
# Calculate similarity based on good matches
|
189 |
+
if len(matches) > 0:
|
190 |
+
# Sort matches by distance
|
191 |
+
matches = sorted(matches, key=lambda x: x.distance)
|
192 |
+
good_matches = [m for m in matches if m.distance < 50] # Threshold for good matches
|
193 |
+
|
194 |
+
# Similarity based on ratio of good matches
|
195 |
+
similarity = len(good_matches) / max(len(kp1), len(kp2))
|
196 |
+
return min(1.0, similarity)
|
197 |
+
|
198 |
+
return 0.0
|
199 |
+
except Exception as e:
|
200 |
+
return 0.0
|
201 |
+
|
202 |
+
def calculate_enhanced_bbox_similarity(bbox1, bbox2, frame1=None, frame2=None):
|
203 |
+
"""Enhanced similarity calculation combining geometric and visual features"""
|
204 |
+
try:
|
205 |
+
# Geometric similarity (IoU + distance) - 40% weight
|
206 |
+
geometric_similarity = calculate_bbox_similarity(bbox1, bbox2)
|
207 |
+
|
208 |
+
# If no frames provided, use only geometric similarity
|
209 |
+
if frame1 is None or frame2 is None:
|
210 |
+
return geometric_similarity
|
211 |
+
|
212 |
+
# Extract image regions from bounding boxes
|
213 |
+
img1 = extract_bbox_image(frame1, bbox1)
|
214 |
+
img2 = extract_bbox_image(frame2, bbox2)
|
215 |
+
|
216 |
+
if img1 is None or img2 is None:
|
217 |
+
return geometric_similarity
|
218 |
+
|
219 |
+
# Visual similarity components
|
220 |
+
hist_similarity = calculate_histogram_similarity(img1, img2) # Color similarity
|
221 |
+
ssim_similarity = calculate_ssim_similarity(img1, img2) # Structural similarity
|
222 |
+
feature_similarity = calculate_feature_similarity(img1, img2) # Feature similarity
|
223 |
+
|
224 |
+
# Combine all similarities with weights
|
225 |
+
final_similarity = (
|
226 |
+
geometric_similarity * 0.4 + # Geometric (IoU + distance)
|
227 |
+
hist_similarity * 0.25 + # Color histogram
|
228 |
+
ssim_similarity * 0.25 + # Structural similarity
|
229 |
+
feature_similarity * 0.1 # Feature matching
|
230 |
+
)
|
231 |
+
|
232 |
+
return min(1.0, final_similarity)
|
233 |
+
|
234 |
+
except Exception as e:
|
235 |
+
return calculate_bbox_similarity(bbox1, bbox2) # Fallback to geometric only
|
236 |
+
|
237 |
+
class TrackedObject:
|
238 |
+
def __init__(self, obj_id, obj_class, bbox):
|
239 |
+
self.id = obj_id
|
240 |
+
self.class_name = obj_class
|
241 |
+
self.alternative_classes = set() # Track alternative classes (e.g., person when primary is motorcycle)
|
242 |
+
self.trajectory = [] # List of center points
|
243 |
+
self.bboxes = [] # List of bounding boxes
|
244 |
+
self.frame_images = [] # Store recent frame images for visual comparison
|
245 |
+
self.counted = False
|
246 |
+
self.last_seen = 0 # Frame number when last seen
|
247 |
+
self.first_seen = 0 # Frame number when first seen
|
248 |
+
self.frames_in_red_zone = 0 # Number of consecutive frames in red zone
|
249 |
+
self.warning_triggered = False # Whether warning has been triggered
|
250 |
+
self.red_zone_entry_frame = None # Frame when object entered red zone
|
251 |
+
self.similarity_scores = [] # Track similarity scores over time
|
252 |
+
self.add_detection(bbox)
|
253 |
+
|
254 |
+
def update_class(self, new_class):
|
255 |
+
"""Update object class, handling motorcycle+person combinations"""
|
256 |
+
# Prioritize motorcycle over person (motorcycle with rider)
|
257 |
+
if self.class_name == 'person' and new_class == 'motorcycle':
|
258 |
+
self.alternative_classes.add(self.class_name)
|
259 |
+
self.class_name = new_class
|
260 |
+
elif self.class_name == 'motorcycle' and new_class == 'person':
|
261 |
+
self.alternative_classes.add(new_class)
|
262 |
+
# Keep motorcycle as primary class
|
263 |
+
elif new_class != self.class_name:
|
264 |
+
# Different class detected, add to alternatives
|
265 |
+
self.alternative_classes.add(new_class)
|
266 |
+
|
267 |
+
def get_primary_class(self):
|
268 |
+
"""Get the primary class for counting purposes"""
|
269 |
+
# Always prioritize motorcycle if it's been detected
|
270 |
+
if 'motorcycle' in [self.class_name] or 'motorcycle' in self.alternative_classes:
|
271 |
+
return 'motorcycle'
|
272 |
+
return self.class_name
|
273 |
+
|
274 |
+
def add_detection(self, bbox, frame_image=None):
|
275 |
+
try:
|
276 |
+
center = get_box_center(bbox)
|
277 |
+
if center is not None:
|
278 |
+
self.trajectory.append(center)
|
279 |
+
self.bboxes.append(bbox)
|
280 |
+
|
281 |
+
# Store frame image for visual comparison
|
282 |
+
if frame_image is not None:
|
283 |
+
self.frame_images.append(frame_image.copy())
|
284 |
+
|
285 |
+
# Keep only recent history to prevent memory issues
|
286 |
+
if len(self.trajectory) > 50:
|
287 |
+
self.trajectory = self.trajectory[-25:]
|
288 |
+
self.bboxes = self.bboxes[-25:]
|
289 |
+
self.frame_images = self.frame_images[-25:] if self.frame_images else []
|
290 |
+
except Exception as e:
|
291 |
+
pass
|
292 |
+
|
293 |
+
def has_movement(self, min_movement=10):
|
294 |
+
try:
|
295 |
+
if len(self.trajectory) < 2:
|
296 |
+
return False
|
297 |
+
return calculate_movement(self.trajectory[-2], self.trajectory[-1], min_movement)
|
298 |
+
except Exception as e:
|
299 |
+
return False
|
300 |
+
|
301 |
+
def update_red_zone_status(self, is_in_red_zone, frame_number):
|
302 |
+
"""Update red zone status and handle warnings"""
|
303 |
+
if is_in_red_zone:
|
304 |
+
if self.red_zone_entry_frame is None:
|
305 |
+
self.red_zone_entry_frame = frame_number
|
306 |
+
# Mark as entered red zone immediately when first detected
|
307 |
+
return "entered"
|
308 |
+
self.frames_in_red_zone += 1
|
309 |
+
|
310 |
+
# Check if warning should be triggered using configurable threshold
|
311 |
+
if self.frames_in_red_zone > state.warning_frame_threshold and not self.warning_triggered:
|
312 |
+
self.warning_triggered = True
|
313 |
+
return "warning" # Return warning to indicate warning should be shown
|
314 |
+
else:
|
315 |
+
# Object left red zone, reset counters
|
316 |
+
if self.red_zone_entry_frame is not None:
|
317 |
+
# Object was in red zone and now left
|
318 |
+
self.frames_in_red_zone = 0
|
319 |
+
self.red_zone_entry_frame = None
|
320 |
+
self.warning_triggered = False
|
321 |
+
return "exited"
|
322 |
+
|
323 |
+
return None
|
324 |
+
|
325 |
+
def get_similarity_with(self, other_bbox, current_frame=None, similarity_threshold=0.5):
|
326 |
+
"""Calculate enhanced similarity with another bounding box using visual comparison"""
|
327 |
+
if len(self.bboxes) == 0:
|
328 |
+
return 0.0
|
329 |
+
|
330 |
+
current_bbox = self.bboxes[-1]
|
331 |
+
|
332 |
+
# Get the most recent frame image for comparison
|
333 |
+
previous_frame = self.frame_images[-1] if self.frame_images else None
|
334 |
+
|
335 |
+
# Use enhanced similarity calculation with visual comparison
|
336 |
+
similarity = calculate_enhanced_bbox_similarity(
|
337 |
+
current_bbox,
|
338 |
+
other_bbox,
|
339 |
+
previous_frame,
|
340 |
+
current_frame
|
341 |
+
)
|
342 |
+
|
343 |
+
# Store similarity score for debugging
|
344 |
+
self.similarity_scores.append({
|
345 |
+
'frame': state.frame_count,
|
346 |
+
'similarity': similarity,
|
347 |
+
'bbox': other_bbox,
|
348 |
+
'method': 'enhanced' if (previous_frame is not None and current_frame is not None) else 'geometric'
|
349 |
+
})
|
350 |
+
|
351 |
+
# Keep only recent similarity scores to prevent memory issues
|
352 |
+
if len(self.similarity_scores) > 20:
|
353 |
+
self.similarity_scores = self.similarity_scores[-10:]
|
354 |
+
|
355 |
+
return similarity
|
356 |
+
|
357 |
+
def is_similar_object(obj1, obj2, similarity_threshold=0.35):
|
358 |
+
"""Check if two objects are similar based on class, position and bounding box similarity"""
|
359 |
+
try:
|
360 |
+
# Allow cross-class matching for motorcycle and person (same object - person on motorcycle)
|
361 |
+
class1, class2 = obj1['class'], obj2['class']
|
362 |
+
|
363 |
+
# Check if classes are compatible (same class or motorcycle+person combination)
|
364 |
+
compatible_classes = (
|
365 |
+
class1 == class2 or # Same class
|
366 |
+
(class1 == 'motorcycle' and class2 == 'person') or # Person on motorcycle
|
367 |
+
(class1 == 'person' and class2 == 'motorcycle') # Motorcycle with person
|
368 |
+
)
|
369 |
+
|
370 |
+
if not compatible_classes:
|
371 |
+
return False
|
372 |
+
|
373 |
+
box1 = obj1['bbox']
|
374 |
+
box2 = obj2['bbox']
|
375 |
+
|
376 |
+
# Convert to x1,y1,x2,y2 format if needed
|
377 |
+
if len(box1) == 4 and len(box2) == 4:
|
378 |
+
if box1[2] < box1[0] or box1[3] < box1[1]: # Already in x1,y1,x2,y2
|
379 |
+
bbox1 = box1
|
380 |
+
else: # Convert from x,y,w,h to x1,y1,x2,y2
|
381 |
+
bbox1 = [box1[0], box1[1], box1[0] + box1[2], box1[1] + box1[3]]
|
382 |
+
|
383 |
+
if box2[2] < box2[0] or box2[3] < box2[1]: # Already in x1,y1,x2,y2
|
384 |
+
bbox2 = box2
|
385 |
+
else: # Convert from x,y,w,h to x1,y1,x2,y2
|
386 |
+
bbox2 = [box2[0], box2[1], box2[0] + box2[2], box2[1] + box2[3]]
|
387 |
+
|
388 |
+
similarity = calculate_bbox_similarity(bbox1, bbox2)
|
389 |
+
|
390 |
+
# Use lower threshold for motorcycle+person combinations
|
391 |
+
if class1 != class2 and ('motorcycle' in [class1, class2] and 'person' in [class1, class2]):
|
392 |
+
return similarity > (similarity_threshold * 0.7) # 30% more lenient for cross-class
|
393 |
+
|
394 |
+
return similarity > similarity_threshold
|
395 |
+
return False
|
396 |
+
except Exception as e:
|
397 |
+
return False
|
398 |
+
|
399 |
+
# Global state for protection area and previous detections
|
400 |
+
class State:
|
401 |
+
def __init__(self):
|
402 |
+
self.protection_points = [] # Store clicked points
|
403 |
+
self.detected_segments = []
|
404 |
+
self.segment_image = None
|
405 |
+
self.selected_segments = []
|
406 |
+
self.previous_detections = None
|
407 |
+
self.cached_protection_area = None
|
408 |
+
self.current_image = None # Store current image for drawing
|
409 |
+
self.original_dims = None # Store original image dimensions
|
410 |
+
self.display_dims = None # Store display dimensions
|
411 |
+
self.tracked_objects = {} # Dictionary of tracked objects
|
412 |
+
self.next_obj_id = 0 # Counter for generating unique object IDs
|
413 |
+
self.object_count = defaultdict(int) # Count by class
|
414 |
+
self.frame_count = 0 # Count processed frames
|
415 |
+
self.red_zone_passed_objects = defaultdict(int) # Objects that passed through red zone
|
416 |
+
self.red_zone_warnings = [] # Store warning messages
|
417 |
+
self.time_window = 10 # Configurable time window for similarity comparison
|
418 |
+
self.similarity_threshold = 0.35 # Configurable similarity threshold (lowered for better matching)
|
419 |
+
self.warning_frame_threshold = 3 # Configurable warning threshold (frames in red zone)
|
420 |
+
# Enhanced red zone tracking
|
421 |
+
self.red_zone_entered_objects = defaultdict(int) # All objects that entered red zone
|
422 |
+
self.red_zone_current_objects = defaultdict(list) # Objects currently in red zone
|
423 |
+
self.red_zone_exited_objects = defaultdict(int) # Objects that exited red zone
|
424 |
+
|
425 |
+
def reset_tracking(self):
|
426 |
+
"""Reset all tracking data"""
|
427 |
+
self.tracked_objects = {}
|
428 |
+
self.next_obj_id = 0
|
429 |
+
self.object_count = defaultdict(int)
|
430 |
+
self.frame_count = 0
|
431 |
+
self.red_zone_passed_objects = defaultdict(int)
|
432 |
+
self.red_zone_warnings = []
|
433 |
+
# Reset enhanced red zone tracking
|
434 |
+
self.red_zone_entered_objects = defaultdict(int)
|
435 |
+
self.red_zone_current_objects = defaultdict(list)
|
436 |
+
self.red_zone_exited_objects = defaultdict(int)
|
437 |
+
|
438 |
+
state = State()
|
439 |
+
|
440 |
+
def image_to_bytes(image):
|
441 |
+
"""Convert PIL Image to bytes for API request"""
|
442 |
+
# Log original image size
|
443 |
+
original_width, original_height = image.size
|
444 |
+
print(f"Original image dimensions: {original_width}x{original_height}")
|
445 |
+
|
446 |
+
# Convert image to bytes without resizing
|
447 |
+
img_byte_arr = io.BytesIO()
|
448 |
+
image.save(img_byte_arr, format='PNG')
|
449 |
+
print(f"Sending image with original dimensions: {original_width}x{original_height}")
|
450 |
+
|
451 |
+
return img_byte_arr.getvalue()
|
452 |
+
|
453 |
+
def base64_to_image(base64_str):
|
454 |
+
"""Convert base64 string to OpenCV image"""
|
455 |
+
img_data = base64.b64decode(base64_str)
|
456 |
+
nparr = np.frombuffer(img_data, np.uint8)
|
457 |
+
return cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
458 |
+
|
459 |
+
def opencv_to_pil(opencv_image):
|
460 |
+
"""Convert OpenCV image to PIL format"""
|
461 |
+
# Convert from BGR to RGB for PIL
|
462 |
+
rgb_image = cv2.cvtColor(opencv_image, cv2.COLOR_BGR2RGB)
|
463 |
+
return Image.fromarray(rgb_image)
|
464 |
+
|
465 |
+
def scale_point_to_original(x, y):
|
466 |
+
"""Scale display coordinates back to original image coordinates"""
|
467 |
+
if state.original_dims is None or state.display_dims is None:
|
468 |
+
return x, y
|
469 |
+
|
470 |
+
orig_w, orig_h = state.original_dims
|
471 |
+
disp_w, disp_h = state.display_dims
|
472 |
+
|
473 |
+
# Calculate scaling factors
|
474 |
+
scale_x = orig_w / disp_w
|
475 |
+
scale_y = orig_h / disp_h
|
476 |
+
|
477 |
+
# Scale the coordinates
|
478 |
+
orig_x = int(x * scale_x)
|
479 |
+
orig_y = int(y * scale_y)
|
480 |
+
|
481 |
+
return orig_x, orig_y
|
482 |
+
|
483 |
+
def scale_points_to_display(points):
|
484 |
+
"""Scale points from original image coordinates to display coordinates"""
|
485 |
+
if state.original_dims is None or state.display_dims is None:
|
486 |
+
return points
|
487 |
+
|
488 |
+
orig_w, orig_h = state.original_dims
|
489 |
+
disp_w, disp_h = state.display_dims
|
490 |
+
|
491 |
+
# Calculate scaling factors
|
492 |
+
scale_x = disp_w / orig_w
|
493 |
+
scale_y = disp_h / orig_h
|
494 |
+
|
495 |
+
# Scale all points
|
496 |
+
display_points = []
|
497 |
+
for point in points:
|
498 |
+
x = int(point[0] * scale_x)
|
499 |
+
y = int(point[1] * scale_y)
|
500 |
+
display_points.append([x, y])
|
501 |
+
|
502 |
+
return display_points
|
503 |
+
|
504 |
+
def draw_protection_area(image):
|
505 |
+
"""Draw protection area points and lines on the image"""
|
506 |
+
img = image.copy()
|
507 |
+
points = state.protection_points
|
508 |
+
|
509 |
+
# Draw existing points and lines
|
510 |
+
if len(points) > 0:
|
511 |
+
# Convert points to numpy array
|
512 |
+
points_array = np.array(points, dtype=np.int32)
|
513 |
+
|
514 |
+
# Draw lines between points
|
515 |
+
if len(points) > 1:
|
516 |
+
cv2.polylines(img, [points_array],
|
517 |
+
True if len(points) == 4 else False,
|
518 |
+
(0, 255, 0), 2)
|
519 |
+
|
520 |
+
# Draw points with numbers
|
521 |
+
for i, point in enumerate(points):
|
522 |
+
cv2.circle(img, tuple(point), 5, (0, 0, 255), -1)
|
523 |
+
cv2.putText(img, str(i+1),
|
524 |
+
(point[0]+10, point[1]+10),
|
525 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
|
526 |
+
|
527 |
+
# Fill polygon with semi-transparent color if we have at least 3 points
|
528 |
+
if len(points) >= 3:
|
529 |
+
overlay = img.copy()
|
530 |
+
cv2.fillPoly(overlay, [points_array], (0, 255, 0))
|
531 |
+
cv2.addWeighted(overlay, 0.3, img, 0.7, 0, img)
|
532 |
+
|
533 |
+
return img
|
534 |
+
|
535 |
+
def update_preview(video):
|
536 |
+
if video is None:
|
537 |
+
return None, [], gr.update(visible=False)
|
538 |
+
cap = cv2.VideoCapture(video)
|
539 |
+
ret, frame = cap.read()
|
540 |
+
cap.release()
|
541 |
+
if ret:
|
542 |
+
# Reset state
|
543 |
+
state.protection_points = []
|
544 |
+
state.detected_segments = []
|
545 |
+
state.segment_image = None
|
546 |
+
state.selected_segments = []
|
547 |
+
state.previous_detections = None
|
548 |
+
state.cached_protection_area = None
|
549 |
+
|
550 |
+
# Store original frame and its dimensions
|
551 |
+
state.current_image = frame.copy() # Store the original frame
|
552 |
+
state.original_dims = (frame.shape[1], frame.shape[0]) # (width, height)
|
553 |
+
state.display_dims = state.original_dims # Set display dims same as original
|
554 |
+
|
555 |
+
# Convert to RGB without resizing
|
556 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
557 |
+
return frame_rgb, gr.update(choices=[], value=[], visible=False)
|
558 |
+
return None, gr.update(choices=[], value=[], visible=False)
|
559 |
+
|
560 |
+
def handle_image_click(evt: gr.SelectData, img):
|
561 |
+
"""Handle mouse clicks on the image"""
|
562 |
+
if len(state.protection_points) >= 4:
|
563 |
+
# Reset points if we already have 4
|
564 |
+
state.protection_points = []
|
565 |
+
|
566 |
+
if state.current_image is None:
|
567 |
+
return img, "Error: No image loaded"
|
568 |
+
|
569 |
+
# Get click coordinates from the event - these are now in original scale
|
570 |
+
click_x, click_y = evt.index[0], evt.index[1]
|
571 |
+
|
572 |
+
# Add point directly (no scaling needed as we're working with original coordinates)
|
573 |
+
state.protection_points.append([click_x, click_y])
|
574 |
+
|
575 |
+
# Create a copy of the current image for display
|
576 |
+
display_img = state.current_image.copy()
|
577 |
+
|
578 |
+
# Draw points and lines
|
579 |
+
for i, point in enumerate(state.protection_points):
|
580 |
+
# Draw point
|
581 |
+
cv2.circle(display_img, (point[0], point[1]), 5, (0, 0, 255), -1)
|
582 |
+
cv2.putText(display_img, str(i+1),
|
583 |
+
(point[0] + 10, point[1] + 10),
|
584 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
|
585 |
+
|
586 |
+
# Draw lines between points
|
587 |
+
if len(state.protection_points) > 1:
|
588 |
+
points_array = np.array(state.protection_points, dtype=np.int32)
|
589 |
+
|
590 |
+
# Draw lines
|
591 |
+
cv2.polylines(display_img, [points_array],
|
592 |
+
True if len(state.protection_points) == 4 else False,
|
593 |
+
(0, 255, 0), 2)
|
594 |
+
|
595 |
+
# Fill polygon with semi-transparent color if we have at least 3 points
|
596 |
+
if len(state.protection_points) >= 3:
|
597 |
+
overlay = display_img.copy()
|
598 |
+
cv2.fillPoly(overlay, [points_array], (0, 255, 0))
|
599 |
+
cv2.addWeighted(overlay, 0.3, display_img, 0.7, 0, display_img)
|
600 |
+
|
601 |
+
# Convert to RGB for display
|
602 |
+
display_img_rgb = cv2.cvtColor(display_img, cv2.COLOR_BGR2RGB)
|
603 |
+
|
604 |
+
# Return the image and status
|
605 |
+
return display_img_rgb, f"Selected {len(state.protection_points)} points\nCoordinates: {state.protection_points}"
|
606 |
+
|
607 |
+
def reset_points():
|
608 |
+
"""Reset protection points"""
|
609 |
+
state.protection_points = []
|
610 |
+
if state.current_image is not None:
|
611 |
+
# Convert original image to RGB for display
|
612 |
+
display_img_rgb = cv2.cvtColor(state.current_image.copy(), cv2.COLOR_BGR2RGB)
|
613 |
+
return display_img_rgb, "Points reset"
|
614 |
+
return None, "Points reset"
|
615 |
+
|
616 |
+
def detect_rail_segments(image):
|
617 |
+
"""Detect rail segments using the API"""
|
618 |
+
try:
|
619 |
+
# Log original image dimensions
|
620 |
+
width, height = image.size
|
621 |
+
print(f"Detecting rail segments on image with dimensions: {width}x{height}")
|
622 |
+
|
623 |
+
files = {"file": image_to_bytes(image)}
|
624 |
+
response = requests.post(
|
625 |
+
f"{API_URL}/detect/rail-segment",
|
626 |
+
files=files,
|
627 |
+
timeout=60
|
628 |
+
)
|
629 |
+
|
630 |
+
if response.status_code == 200:
|
631 |
+
result = response.json()
|
632 |
+
if "segments" in result:
|
633 |
+
return result["segments"], base64_to_image(result["image_base64"])
|
634 |
+
else:
|
635 |
+
return [], None
|
636 |
+
else:
|
637 |
+
print(f"API error: {response.status_code} - Image size was {width}x{height}")
|
638 |
+
return [], None
|
639 |
+
except Exception as e:
|
640 |
+
print(f"Error in detect_rail_segments: {str(e)}")
|
641 |
+
return [], None
|
642 |
+
|
643 |
+
def extract_protection_area(first_frame):
|
644 |
+
"""Extract and cache protection area points using rail segment detection"""
|
645 |
+
try:
|
646 |
+
# Log original frame dimensions
|
647 |
+
height, width = first_frame.shape[:2]
|
648 |
+
print(f"Extracting protection area from frame with dimensions: {width}x{height}")
|
649 |
+
|
650 |
+
# Convert frame to PIL Image without resizing
|
651 |
+
first_frame_pil = Image.fromarray(cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB))
|
652 |
+
|
653 |
+
# Verify PIL image dimensions
|
654 |
+
pil_width, pil_height = first_frame_pil.size
|
655 |
+
print(f"PIL Image dimensions before API call: {pil_width}x{pil_height}")
|
656 |
+
|
657 |
+
# Detect rail segments
|
658 |
+
segments, segment_img = detect_rail_segments(first_frame_pil)
|
659 |
+
|
660 |
+
if segments and len(segments) > 0:
|
661 |
+
# Verify segment image dimensions
|
662 |
+
if segment_img is not None:
|
663 |
+
seg_height, seg_width = segment_img.shape[:2]
|
664 |
+
print(f"Received segment image dimensions: {seg_width}x{seg_height}")
|
665 |
+
|
666 |
+
# Only resize if dimensions don't match
|
667 |
+
if (seg_width, seg_height) != (width, height):
|
668 |
+
print(f"Resizing segment image from {seg_width}x{seg_height} to {width}x{height}")
|
669 |
+
segment_img = cv2.resize(segment_img, (width, height), interpolation=cv2.INTER_LANCZOS4)
|
670 |
+
|
671 |
+
# Store segments and image
|
672 |
+
state.detected_segments = segments
|
673 |
+
state.segment_image = segment_img
|
674 |
+
|
675 |
+
# Create segment choices with more detailed information
|
676 |
+
segment_choices = []
|
677 |
+
for i, segment in enumerate(segments):
|
678 |
+
# Extract mask dimensions for verification
|
679 |
+
mask_points = segment.get('mask', [])
|
680 |
+
if mask_points:
|
681 |
+
mask_x = [p[0] for p in mask_points]
|
682 |
+
mask_y = [p[1] for p in mask_points]
|
683 |
+
mask_width = max(mask_x) - min(mask_x)
|
684 |
+
mask_height = max(mask_y) - min(mask_y)
|
685 |
+
print(f"Segment {i+1} mask dimensions: {mask_width}x{mask_height}")
|
686 |
+
|
687 |
+
choice_text = f"Segment {i+1} (Confidence: {segment['confidence']:.2f})"
|
688 |
+
segment_choices.append(choice_text)
|
689 |
+
|
690 |
+
state.selected_segments = segment_choices # Select all segments by default
|
691 |
+
|
692 |
+
# Use the first segment's mask as protection area
|
693 |
+
segment = segments[0]
|
694 |
+
if 'mask' in segment and segment['mask']:
|
695 |
+
mask_points = segment['mask']
|
696 |
+
# Convert to list of [x,y] points and ensure integer values
|
697 |
+
mask_points = [[int(float(x)), int(float(y))] for x, y in mask_points]
|
698 |
+
if len(mask_points) >= 3: # Need at least 3 points for a valid polygon
|
699 |
+
state.cached_protection_area = mask_points
|
700 |
+
|
701 |
+
# Convert segment image to RGB for display without resizing
|
702 |
+
if segment_img is not None:
|
703 |
+
display_img = cv2.cvtColor(segment_img, cv2.COLOR_BGR2RGB)
|
704 |
+
return True, "Protection area extracted successfully", display_img
|
705 |
+
|
706 |
+
return False, "Invalid mask points in segment", None
|
707 |
+
return False, "No valid rail segments detected", None
|
708 |
+
|
709 |
+
except Exception as e:
|
710 |
+
print(f"Error in extract_protection_area: {str(e)}")
|
711 |
+
return False, f"Error extracting protection area: {str(e)}", None
|
712 |
+
|
713 |
+
def get_segment_index(choice_text):
|
714 |
+
"""Extract segment index from choice text"""
|
715 |
+
try:
|
716 |
+
# Extract index from "Segment X (Confidence: Y)" format
|
717 |
+
return int(choice_text.split()[1]) - 1
|
718 |
+
except:
|
719 |
+
return -1
|
720 |
+
|
721 |
+
def update_object_tracking(objects_in_area, current_frame=None):
|
722 |
+
"""Update object tracking with new detections"""
|
723 |
+
try:
|
724 |
+
current_tracked = set() # Keep track of objects seen in this frame
|
725 |
+
current_warnings = [] # Collect warnings for this frame
|
726 |
+
|
727 |
+
# Clear current objects list for this frame
|
728 |
+
state.red_zone_current_objects = defaultdict(list)
|
729 |
+
|
730 |
+
# Match new detections with existing tracked objects
|
731 |
+
for obj in objects_in_area:
|
732 |
+
try:
|
733 |
+
if 'bbox' not in obj or 'class' not in obj:
|
734 |
+
continue
|
735 |
+
|
736 |
+
bbox = obj['bbox']
|
737 |
+
obj_class = obj['class']
|
738 |
+
is_in_red_zone = obj.get('in_protection_area', False)
|
739 |
+
matched = False
|
740 |
+
best_match_id = None
|
741 |
+
best_similarity = 0.0
|
742 |
+
|
743 |
+
# Try to match with existing tracked objects using cross-class similarity
|
744 |
+
for obj_id, tracked in state.tracked_objects.items():
|
745 |
+
# Check if object was seen recently (within time window)
|
746 |
+
if state.frame_count - tracked.last_seen <= state.time_window:
|
747 |
+
# Create temporary objects for similarity comparison
|
748 |
+
temp_obj1 = {'class': tracked.class_name, 'bbox': tracked.bboxes[-1] if tracked.bboxes else bbox}
|
749 |
+
temp_obj2 = {'class': obj_class, 'bbox': bbox}
|
750 |
+
|
751 |
+
if is_similar_object(temp_obj1, temp_obj2, state.similarity_threshold):
|
752 |
+
# Use enhanced similarity calculation with visual comparison
|
753 |
+
similarity = tracked.get_similarity_with(bbox, current_frame)
|
754 |
+
|
755 |
+
# Use the best match above threshold
|
756 |
+
if similarity > best_similarity:
|
757 |
+
best_similarity = similarity
|
758 |
+
best_match_id = obj_id
|
759 |
+
|
760 |
+
# If good match found, update existing object
|
761 |
+
if best_match_id is not None:
|
762 |
+
tracked = state.tracked_objects[best_match_id]
|
763 |
+
tracked.add_detection(bbox, current_frame) # Pass current frame
|
764 |
+
tracked.update_class(obj_class) # Update class information
|
765 |
+
tracked.last_seen = state.frame_count
|
766 |
+
current_tracked.add(best_match_id)
|
767 |
+
matched = True
|
768 |
+
|
769 |
+
# Check red zone status and handle state changes
|
770 |
+
zone_status = tracked.update_red_zone_status(is_in_red_zone, state.frame_count)
|
771 |
+
primary_class = tracked.get_primary_class() # Use primary class for counting
|
772 |
+
|
773 |
+
if zone_status == "entered":
|
774 |
+
# Object just entered red zone - count it immediately
|
775 |
+
if not tracked.counted:
|
776 |
+
tracked.counted = True
|
777 |
+
state.red_zone_entered_objects[primary_class] += 1
|
778 |
+
|
779 |
+
elif zone_status == "warning":
|
780 |
+
warning_msg = f"⚠️ WARNING: {primary_class} (ID: {tracked.id}) has been in red zone for {tracked.frames_in_red_zone} frames!"
|
781 |
+
current_warnings.append(warning_msg)
|
782 |
+
state.red_zone_warnings.append({
|
783 |
+
'frame': state.frame_count,
|
784 |
+
'object_id': tracked.id,
|
785 |
+
'class': primary_class,
|
786 |
+
'frames_in_zone': tracked.frames_in_red_zone,
|
787 |
+
'message': warning_msg
|
788 |
+
})
|
789 |
+
|
790 |
+
elif zone_status == "exited":
|
791 |
+
# Object exited red zone
|
792 |
+
state.red_zone_exited_objects[primary_class] += 1
|
793 |
+
|
794 |
+
# Add to current objects in red zone if still in zone
|
795 |
+
if is_in_red_zone:
|
796 |
+
display_class = primary_class
|
797 |
+
if tracked.alternative_classes:
|
798 |
+
display_class += f" ({'+'.join(sorted(tracked.alternative_classes))})"
|
799 |
+
|
800 |
+
state.red_zone_current_objects[primary_class].append({
|
801 |
+
'id': tracked.id,
|
802 |
+
'frames_in_zone': tracked.frames_in_red_zone,
|
803 |
+
'entry_frame': tracked.red_zone_entry_frame,
|
804 |
+
'display_class': display_class
|
805 |
+
})
|
806 |
+
|
807 |
+
# If no match found, create new tracked object
|
808 |
+
if not matched:
|
809 |
+
new_obj = TrackedObject(state.next_obj_id, obj_class, bbox)
|
810 |
+
new_obj.add_detection(bbox, current_frame) # Pass current frame
|
811 |
+
new_obj.last_seen = state.frame_count
|
812 |
+
new_obj.first_seen = state.frame_count
|
813 |
+
state.tracked_objects[state.next_obj_id] = new_obj
|
814 |
+
current_tracked.add(state.next_obj_id)
|
815 |
+
|
816 |
+
# Check red zone status for new object
|
817 |
+
zone_status = new_obj.update_red_zone_status(is_in_red_zone, state.frame_count)
|
818 |
+
primary_class = new_obj.get_primary_class()
|
819 |
+
|
820 |
+
if zone_status == "entered":
|
821 |
+
# New object entered red zone immediately
|
822 |
+
new_obj.counted = True
|
823 |
+
state.red_zone_entered_objects[primary_class] += 1
|
824 |
+
|
825 |
+
# Add to current objects in red zone
|
826 |
+
state.red_zone_current_objects[primary_class].append({
|
827 |
+
'id': new_obj.id,
|
828 |
+
'frames_in_zone': new_obj.frames_in_red_zone,
|
829 |
+
'entry_frame': new_obj.red_zone_entry_frame,
|
830 |
+
'display_class': primary_class
|
831 |
+
})
|
832 |
+
|
833 |
+
state.next_obj_id += 1
|
834 |
+
|
835 |
+
except Exception as e:
|
836 |
+
continue
|
837 |
+
|
838 |
+
# Update objects not seen in current frame
|
839 |
+
for obj_id, tracked in state.tracked_objects.items():
|
840 |
+
if obj_id not in current_tracked:
|
841 |
+
# Object not seen in current frame, update red zone status
|
842 |
+
zone_status = tracked.update_red_zone_status(False, state.frame_count)
|
843 |
+
if zone_status == "exited":
|
844 |
+
# Object exited red zone
|
845 |
+
primary_class = tracked.get_primary_class()
|
846 |
+
state.red_zone_exited_objects[primary_class] += 1
|
847 |
+
|
848 |
+
# Remove objects that haven't been seen for a while
|
849 |
+
if state.frame_count > state.time_window:
|
850 |
+
to_remove = []
|
851 |
+
for obj_id, tracked in state.tracked_objects.items():
|
852 |
+
if state.frame_count - tracked.last_seen > state.time_window * 2: # Remove after 2x time window
|
853 |
+
# If object was in red zone when lost, count as exited
|
854 |
+
if tracked.red_zone_entry_frame is not None:
|
855 |
+
primary_class = tracked.get_primary_class()
|
856 |
+
state.red_zone_exited_objects[primary_class] += 1
|
857 |
+
to_remove.append(obj_id)
|
858 |
+
|
859 |
+
for obj_id in to_remove:
|
860 |
+
del state.tracked_objects[obj_id]
|
861 |
+
|
862 |
+
# Store current warnings
|
863 |
+
if current_warnings:
|
864 |
+
print(f"Frame {state.frame_count} Warnings: {current_warnings}")
|
865 |
+
|
866 |
+
except Exception as e:
|
867 |
+
print(f"Error in update_object_tracking: {str(e)}")
|
868 |
+
|
869 |
+
def get_red_zone_summary():
|
870 |
+
"""Generate comprehensive summary of objects in red zone with proper grouping"""
|
871 |
+
summary = []
|
872 |
+
|
873 |
+
# Header
|
874 |
+
summary.append("🔴 RED ZONE MONITORING REPORT")
|
875 |
+
summary.append("=" * 40)
|
876 |
+
|
877 |
+
# Objects that entered red zone (all time)
|
878 |
+
if state.red_zone_entered_objects:
|
879 |
+
summary.append("\n📊 OBJECTS ENTERED RED ZONE:")
|
880 |
+
total_entered = sum(state.red_zone_entered_objects.values())
|
881 |
+
summary.append(f"Total objects entered: {total_entered}")
|
882 |
+
|
883 |
+
for obj_class, count in sorted(state.red_zone_entered_objects.items()):
|
884 |
+
summary.append(f" • {obj_class}: {count}")
|
885 |
+
else:
|
886 |
+
summary.append("\n📊 OBJECTS ENTERED RED ZONE:")
|
887 |
+
summary.append("No objects have entered the red zone yet")
|
888 |
+
|
889 |
+
# Objects currently in red zone
|
890 |
+
current_total = sum(len(objects) for objects in state.red_zone_current_objects.values())
|
891 |
+
if current_total > 0:
|
892 |
+
summary.append(f"\n🚨 CURRENTLY IN RED ZONE ({current_total} objects):")
|
893 |
+
|
894 |
+
for obj_class, objects in sorted(state.red_zone_current_objects.items()):
|
895 |
+
if objects:
|
896 |
+
summary.append(f" {obj_class} ({len(objects)} objects):")
|
897 |
+
for obj_info in objects:
|
898 |
+
display_class = obj_info.get('display_class', obj_class)
|
899 |
+
summary.append(f" - ID {obj_info['id']}: {obj_info['frames_in_zone']} frames (entered: frame {obj_info['entry_frame']}) [{display_class}]")
|
900 |
+
else:
|
901 |
+
summary.append("\n🚨 CURRENTLY IN RED ZONE:")
|
902 |
+
summary.append("No objects currently in red zone")
|
903 |
+
|
904 |
+
# Objects that exited red zone
|
905 |
+
if state.red_zone_exited_objects:
|
906 |
+
summary.append("\n✅ OBJECTS EXITED RED ZONE:")
|
907 |
+
total_exited = sum(state.red_zone_exited_objects.values())
|
908 |
+
summary.append(f"Total objects exited: {total_exited}")
|
909 |
+
|
910 |
+
for obj_class, count in sorted(state.red_zone_exited_objects.items()):
|
911 |
+
summary.append(f" • {obj_class}: {count}")
|
912 |
+
|
913 |
+
# Recent warnings
|
914 |
+
recent_warnings = [w for w in state.red_zone_warnings if state.frame_count - w['frame'] <= 10]
|
915 |
+
if recent_warnings:
|
916 |
+
summary.append("\n⚠️ RECENT WARNINGS:")
|
917 |
+
for warning in recent_warnings[-5:]: # Show last 5 warnings
|
918 |
+
summary.append(f" • Frame {warning['frame']}: {warning['class']} (ID: {warning['object_id']}) - {warning['frames_in_zone']} frames in zone")
|
919 |
+
|
920 |
+
# Statistics summary
|
921 |
+
summary.append(f"\n📈 STATISTICS:")
|
922 |
+
summary.append(f" • Total unique objects tracked: {len(state.tracked_objects)}")
|
923 |
+
summary.append(f" • Active warnings: {len([w for w in state.red_zone_warnings if state.frame_count - w['frame'] <= 5])}")
|
924 |
+
summary.append(f" • Frame: {state.frame_count}")
|
925 |
+
summary.append(f" • Warning threshold: {state.warning_frame_threshold} frames")
|
926 |
+
|
927 |
+
# Show object combination info
|
928 |
+
combined_objects = 0
|
929 |
+
for tracked in state.tracked_objects.values():
|
930 |
+
if tracked.alternative_classes:
|
931 |
+
combined_objects += 1
|
932 |
+
|
933 |
+
if combined_objects > 0:
|
934 |
+
summary.append(f" • Objects with combined detections: {combined_objects}")
|
935 |
+
|
936 |
+
return "\n".join(summary)
|
937 |
+
|
938 |
+
def process_frame(frame, confidence):
|
939 |
+
"""Process a video frame using cached protection area"""
|
940 |
+
try:
|
941 |
+
protection_area = []
|
942 |
+
if state.selected_segments and state.detected_segments:
|
943 |
+
for choice in state.selected_segments:
|
944 |
+
idx = get_segment_index(choice)
|
945 |
+
if 0 <= idx < len(state.detected_segments):
|
946 |
+
segment = state.detected_segments[idx]
|
947 |
+
if 'mask' in segment and segment['mask']:
|
948 |
+
protection_area = segment['mask']
|
949 |
+
break
|
950 |
+
elif len(state.protection_points) >= 3:
|
951 |
+
protection_area = state.protection_points
|
952 |
+
|
953 |
+
if not protection_area:
|
954 |
+
return None, "Protection area not set. Please extract protection area first."
|
955 |
+
|
956 |
+
# Ensure frame is valid
|
957 |
+
if frame is None or frame.size == 0:
|
958 |
+
return None, "Invalid frame"
|
959 |
+
|
960 |
+
success, buffer = cv2.imencode('.png', frame)
|
961 |
+
if not success:
|
962 |
+
return None, "Failed to encode frame"
|
963 |
+
|
964 |
+
files = {
|
965 |
+
"file": ("frame.png", buffer.tobytes(), "image/png")
|
966 |
+
}
|
967 |
+
|
968 |
+
protection_area_json = json.dumps(protection_area)
|
969 |
+
|
970 |
+
data = {
|
971 |
+
"protection_area": protection_area_json,
|
972 |
+
"confidence_threshold": str(confidence)
|
973 |
+
}
|
974 |
+
|
975 |
+
if state.previous_detections:
|
976 |
+
data["previous_detections"] = json.dumps(state.previous_detections)
|
977 |
+
|
978 |
+
try:
|
979 |
+
response = requests.post(
|
980 |
+
f"{API_URL}/detect/objects-and-redlight",
|
981 |
+
files=files,
|
982 |
+
data=data,
|
983 |
+
timeout=60
|
984 |
+
)
|
985 |
+
|
986 |
+
if response.status_code == 200:
|
987 |
+
result = response.json()
|
988 |
+
if not result.get("success"):
|
989 |
+
return None, f"API Error: {result.get('detail', 'Unknown error')}"
|
990 |
+
|
991 |
+
result_data = result.get("result", {})
|
992 |
+
if not result_data:
|
993 |
+
return None, "No result data received"
|
994 |
+
|
995 |
+
red_light_info = result_data.get("red_light", {})
|
996 |
+
red_light_detected = red_light_info.get("detected", False)
|
997 |
+
red_light_prob = red_light_info.get("probability", 0)
|
998 |
+
|
999 |
+
img_base64 = result_data.get("image_base64")
|
1000 |
+
if not img_base64:
|
1001 |
+
return None, "No image data received from API"
|
1002 |
+
|
1003 |
+
try:
|
1004 |
+
if ',' in img_base64:
|
1005 |
+
img_base64 = img_base64.split(',')[1]
|
1006 |
+
|
1007 |
+
img_data = base64.b64decode(img_base64)
|
1008 |
+
nparr = np.frombuffer(img_data, np.uint8)
|
1009 |
+
processed_img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
1010 |
+
|
1011 |
+
if processed_img is None or processed_img.size == 0:
|
1012 |
+
return None, "Failed to decode image from API response"
|
1013 |
+
|
1014 |
+
objects_in_area = [obj for obj in result_data.get("objects", [])
|
1015 |
+
if obj.get("in_protection_area", False) and
|
1016 |
+
'bbox' in obj and 'class' in obj]
|
1017 |
+
|
1018 |
+
# Update object tracking
|
1019 |
+
state.frame_count += 1
|
1020 |
+
update_object_tracking(objects_in_area, processed_img)
|
1021 |
+
|
1022 |
+
# Cache detections for next frame
|
1023 |
+
state.previous_detections = objects_in_area
|
1024 |
+
|
1025 |
+
processed_img_rgb = cv2.cvtColor(processed_img, cv2.COLOR_BGR2RGB)
|
1026 |
+
|
1027 |
+
status = []
|
1028 |
+
status.append(f"Red Light: {'YES' if red_light_detected else 'NO'} ({red_light_prob:.2f})")
|
1029 |
+
|
1030 |
+
# Add enhanced red zone summary
|
1031 |
+
red_zone_summary = get_red_zone_summary()
|
1032 |
+
status.append(f"\n{red_zone_summary}")
|
1033 |
+
|
1034 |
+
if objects_in_area:
|
1035 |
+
status.append("\n📊 CURRENT FRAME DETECTIONS:")
|
1036 |
+
for obj in objects_in_area:
|
1037 |
+
status.append(f" • {obj['class']} (confidence: {obj['confidence']:.2f})")
|
1038 |
+
|
1039 |
+
# Add tracking statistics
|
1040 |
+
active_objects = len([obj for obj in state.tracked_objects.values()
|
1041 |
+
if state.frame_count - obj.last_seen <= 3])
|
1042 |
+
status.append(f"\n📈 TRACKING STATS:")
|
1043 |
+
status.append(f" • Active tracked objects: {active_objects}")
|
1044 |
+
status.append(f" • Frame: {state.frame_count}")
|
1045 |
+
status.append(f" • Time window: {state.time_window} frames")
|
1046 |
+
status.append(f" • Similarity threshold: {state.similarity_threshold:.2f}")
|
1047 |
+
|
1048 |
+
return processed_img_rgb, "\n".join(status)
|
1049 |
+
|
1050 |
+
except Exception as e:
|
1051 |
+
return None, f"Error processing detection results: {str(e)}"
|
1052 |
+
else:
|
1053 |
+
error_detail = f"API Error: {response.status_code}"
|
1054 |
+
try:
|
1055 |
+
error_json = response.json()
|
1056 |
+
if 'detail' in error_json:
|
1057 |
+
error_detail += f" - {error_json['detail']}"
|
1058 |
+
except:
|
1059 |
+
error_detail += f" - {response.text}"
|
1060 |
+
return None, error_detail
|
1061 |
+
|
1062 |
+
except requests.exceptions.Timeout:
|
1063 |
+
return None, "API request timed out"
|
1064 |
+
except requests.exceptions.ConnectionError:
|
1065 |
+
return None, "Could not connect to API server"
|
1066 |
+
except Exception as e:
|
1067 |
+
return None, f"API request failed: {str(e)}"
|
1068 |
+
|
1069 |
+
except Exception as e:
|
1070 |
+
return None, f"Error processing frame: {str(e)}"
|
1071 |
+
|
1072 |
+
def process_video(video, confidence=DEFAULT_CONFIDENCE, target_fps=1):
|
1073 |
+
"""Stream processed frames in real-time using cached protection area"""
|
1074 |
+
detection_results = []
|
1075 |
+
cap = cv2.VideoCapture(video)
|
1076 |
+
|
1077 |
+
if not cap.isOpened():
|
1078 |
+
yield None, "Error: Could not open video file"
|
1079 |
+
return
|
1080 |
+
|
1081 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
1082 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
1083 |
+
frame_interval = max(1, int(fps / target_fps))
|
1084 |
+
frame_number = 0
|
1085 |
+
|
1086 |
+
try:
|
1087 |
+
while True:
|
1088 |
+
ret, frame = cap.read()
|
1089 |
+
if not ret:
|
1090 |
+
break
|
1091 |
+
|
1092 |
+
frame_number += 1
|
1093 |
+
if frame_number % frame_interval != 0:
|
1094 |
+
continue
|
1095 |
+
|
1096 |
+
# Process frame and get results
|
1097 |
+
processed_frame, result = process_frame(frame, confidence)
|
1098 |
+
|
1099 |
+
if processed_frame is not None:
|
1100 |
+
# Frame is already in RGB format from process_frame
|
1101 |
+
current_status = f"Processing frame {frame_number}/{total_frames}\n{result}"
|
1102 |
+
yield processed_frame, current_status
|
1103 |
+
else:
|
1104 |
+
current_status = f"Frame {frame_number}: {result}"
|
1105 |
+
yield None, current_status
|
1106 |
+
|
1107 |
+
# Release resources
|
1108 |
+
cap.release()
|
1109 |
+
|
1110 |
+
# Generate final summary
|
1111 |
+
final_summary = generate_final_summary()
|
1112 |
+
yield None, final_summary
|
1113 |
+
|
1114 |
+
except Exception as e:
|
1115 |
+
yield None, f"Error processing video: {str(e)}"
|
1116 |
+
finally:
|
1117 |
+
cap.release()
|
1118 |
+
|
1119 |
+
def generate_final_summary():
|
1120 |
+
"""Generate comprehensive final summary of video processing"""
|
1121 |
+
summary_lines = []
|
1122 |
+
|
1123 |
+
summary_lines.append("🎬 VIDEO PROCESSING COMPLETE")
|
1124 |
+
summary_lines.append("=" * 50)
|
1125 |
+
|
1126 |
+
# Processing statistics
|
1127 |
+
summary_lines.append(f"📊 PROCESSING STATISTICS:")
|
1128 |
+
summary_lines.append(f" • Total frames processed: {state.frame_count}")
|
1129 |
+
summary_lines.append(f" • Time window used: {state.time_window} frames")
|
1130 |
+
summary_lines.append(f" • Similarity threshold: {state.similarity_threshold:.2f}")
|
1131 |
+
summary_lines.append(f" • Warning threshold: {state.warning_frame_threshold} frames")
|
1132 |
+
|
1133 |
+
# Enhanced red zone summary
|
1134 |
+
if state.red_zone_entered_objects:
|
1135 |
+
summary_lines.append(f"\n🔴 RED ZONE ANALYSIS:")
|
1136 |
+
total_entered = sum(state.red_zone_entered_objects.values())
|
1137 |
+
total_exited = sum(state.red_zone_exited_objects.values())
|
1138 |
+
|
1139 |
+
summary_lines.append(f" • Total objects entered red zone: {total_entered}")
|
1140 |
+
summary_lines.append(f" • Total objects exited red zone: {total_exited}")
|
1141 |
+
summary_lines.append(f" • Objects still in red zone: {total_entered - total_exited}")
|
1142 |
+
|
1143 |
+
summary_lines.append(f"\n 📋 BREAKDOWN BY OBJECT CLASS:")
|
1144 |
+
|
1145 |
+
# Combine all object classes that appeared in red zone
|
1146 |
+
all_classes = set(state.red_zone_entered_objects.keys()) | set(state.red_zone_exited_objects.keys())
|
1147 |
+
|
1148 |
+
for obj_class in sorted(all_classes):
|
1149 |
+
entered = state.red_zone_entered_objects.get(obj_class, 0)
|
1150 |
+
exited = state.red_zone_exited_objects.get(obj_class, 0)
|
1151 |
+
still_in = entered - exited
|
1152 |
+
|
1153 |
+
summary_lines.append(f" {obj_class}:")
|
1154 |
+
summary_lines.append(f" - Entered: {entered}")
|
1155 |
+
summary_lines.append(f" - Exited: {exited}")
|
1156 |
+
summary_lines.append(f" - Still in zone: {still_in}")
|
1157 |
+
else:
|
1158 |
+
summary_lines.append(f"\n🔴 RED ZONE ANALYSIS:")
|
1159 |
+
summary_lines.append(f" • No objects detected in red zone during processing")
|
1160 |
+
|
1161 |
+
# Object combination analysis
|
1162 |
+
combined_objects = []
|
1163 |
+
motorcycle_person_combinations = 0
|
1164 |
+
|
1165 |
+
for obj_id, tracked in state.tracked_objects.items():
|
1166 |
+
if tracked.alternative_classes:
|
1167 |
+
combo_info = f"ID {obj_id}: {tracked.class_name}"
|
1168 |
+
if tracked.alternative_classes:
|
1169 |
+
combo_info += f" + {', '.join(sorted(tracked.alternative_classes))}"
|
1170 |
+
combined_objects.append(combo_info)
|
1171 |
+
|
1172 |
+
# Count motorcycle+person combinations specifically
|
1173 |
+
if (tracked.class_name == 'motorcycle' and 'person' in tracked.alternative_classes) or \
|
1174 |
+
(tracked.class_name == 'person' and 'motorcycle' in tracked.alternative_classes):
|
1175 |
+
motorcycle_person_combinations += 1
|
1176 |
+
|
1177 |
+
if combined_objects:
|
1178 |
+
summary_lines.append(f"\n🔗 OBJECT COMBINATIONS DETECTED:")
|
1179 |
+
summary_lines.append(f" • Total combined detections: {len(combined_objects)}")
|
1180 |
+
summary_lines.append(f" • Motorcycle+Person combinations: {motorcycle_person_combinations}")
|
1181 |
+
summary_lines.append(f" • Details:")
|
1182 |
+
for combo in combined_objects:
|
1183 |
+
summary_lines.append(f" - {combo}")
|
1184 |
+
|
1185 |
+
# Warning summary
|
1186 |
+
if state.red_zone_warnings:
|
1187 |
+
summary_lines.append(f"\n⚠️ WARNING SUMMARY:")
|
1188 |
+
summary_lines.append(f" • Total warnings generated: {len(state.red_zone_warnings)}")
|
1189 |
+
|
1190 |
+
# Group warnings by object class
|
1191 |
+
warning_by_class = defaultdict(int)
|
1192 |
+
for warning in state.red_zone_warnings:
|
1193 |
+
warning_by_class[warning['class']] += 1
|
1194 |
+
|
1195 |
+
for obj_class, count in sorted(warning_by_class.items()):
|
1196 |
+
summary_lines.append(f" - {obj_class}: {count} warnings")
|
1197 |
+
|
1198 |
+
# Show detailed warning log
|
1199 |
+
if len(state.red_zone_warnings) > 0:
|
1200 |
+
summary_lines.append(f"\n 📋 Warning Log (last 10):")
|
1201 |
+
for warning in state.red_zone_warnings[-10:]: # Last 10 warnings
|
1202 |
+
summary_lines.append(f" - Frame {warning['frame']}: {warning['class']} (ID: {warning['object_id']}) - {warning['frames_in_zone']} frames in zone")
|
1203 |
+
else:
|
1204 |
+
summary_lines.append(f"\n⚠️ WARNING SUMMARY:")
|
1205 |
+
summary_lines.append(f" • No warnings generated (no objects stayed in red zone > {state.warning_frame_threshold} frames)")
|
1206 |
+
|
1207 |
+
# Active tracking summary
|
1208 |
+
total_tracked = len(state.tracked_objects)
|
1209 |
+
if total_tracked > 0:
|
1210 |
+
summary_lines.append(f"\n📈 OBJECT TRACKING SUMMARY:")
|
1211 |
+
summary_lines.append(f" • Total unique objects tracked: {total_tracked}")
|
1212 |
+
|
1213 |
+
# Group by primary class
|
1214 |
+
objects_by_class = defaultdict(int)
|
1215 |
+
for obj in state.tracked_objects.values():
|
1216 |
+
primary_class = obj.get_primary_class()
|
1217 |
+
objects_by_class[primary_class] += 1
|
1218 |
+
|
1219 |
+
for obj_class, count in sorted(objects_by_class.items()):
|
1220 |
+
summary_lines.append(f" - {obj_class}: {count}")
|
1221 |
+
|
1222 |
+
summary_lines.append("\n✅ Processing completed successfully!")
|
1223 |
+
summary_lines.append("\nNote: Objects detected as both motorcycle and person are counted as motorcycle (person riding motorcycle)")
|
1224 |
+
|
1225 |
+
return "\n".join(summary_lines)
|
1226 |
+
|
1227 |
+
def extract_area_from_video(video):
|
1228 |
+
if video is None:
|
1229 |
+
return None, "Please upload a video", gr.update(choices=[], value=[], visible=False)
|
1230 |
+
|
1231 |
+
cap = cv2.VideoCapture(video)
|
1232 |
+
ret, frame = cap.read()
|
1233 |
+
cap.release()
|
1234 |
+
|
1235 |
+
if not ret:
|
1236 |
+
return None, "Could not read video frame", gr.update(choices=[], value=[], visible=False)
|
1237 |
+
|
1238 |
+
success, message, segment_img = extract_protection_area(frame)
|
1239 |
+
if success and segment_img is not None:
|
1240 |
+
# Convert segment image to RGB for display
|
1241 |
+
segment_img_rgb = cv2.cvtColor(segment_img, cv2.COLOR_BGR2RGB)
|
1242 |
+
|
1243 |
+
# Create segment choices
|
1244 |
+
segment_choices = [f"Segment {i+1} (Confidence: {segment['confidence']:.2f})"
|
1245 |
+
for i, segment in enumerate(state.detected_segments)]
|
1246 |
+
|
1247 |
+
return segment_img_rgb, message, gr.update(choices=segment_choices, value=segment_choices, visible=True)
|
1248 |
+
return None, message, gr.update(choices=[], value=[], visible=False)
|
1249 |
+
|
1250 |
+
def update_selected_segments(selected):
|
1251 |
+
if selected is None:
|
1252 |
+
selected = []
|
1253 |
+
state.selected_segments = selected
|
1254 |
+
return gr.update()
|
1255 |
+
|
1256 |
+
def process_video_wrapper(video, confidence=DEFAULT_CONFIDENCE, target_fps=1, time_window=10, similarity_threshold=0.35, warning_frame_threshold=3):
|
1257 |
+
"""Wrapper around process_video to handle full-size video processing"""
|
1258 |
+
if video is None:
|
1259 |
+
yield None, "Please upload a video"
|
1260 |
+
return
|
1261 |
+
|
1262 |
+
# Reset tracking state and update parameters
|
1263 |
+
state.reset_tracking()
|
1264 |
+
state.time_window = time_window
|
1265 |
+
state.similarity_threshold = similarity_threshold
|
1266 |
+
state.warning_frame_threshold = warning_frame_threshold
|
1267 |
+
|
1268 |
+
protection_area = []
|
1269 |
+
if state.selected_segments and state.detected_segments:
|
1270 |
+
for choice in state.selected_segments:
|
1271 |
+
idx = get_segment_index(choice)
|
1272 |
+
if 0 <= idx < len(state.detected_segments):
|
1273 |
+
segment = state.detected_segments[idx]
|
1274 |
+
if 'mask' in segment and segment['mask']:
|
1275 |
+
protection_area = segment['mask']
|
1276 |
+
break
|
1277 |
+
elif len(state.protection_points) >= 3:
|
1278 |
+
protection_area = state.protection_points
|
1279 |
+
|
1280 |
+
if not protection_area:
|
1281 |
+
yield None, "Please extract protection area first"
|
1282 |
+
return
|
1283 |
+
|
1284 |
+
try:
|
1285 |
+
yield None, f"🚀 Starting video processing...\n⚙️ Time window: {time_window} frames\n⚙️ Similarity threshold: {similarity_threshold:.2f}\n⚙️ Warning threshold: {warning_frame_threshold} frames"
|
1286 |
+
|
1287 |
+
for frame, status in process_video(video, confidence, target_fps):
|
1288 |
+
yield frame, status
|
1289 |
+
|
1290 |
+
except Exception as e:
|
1291 |
+
yield None, f"Error processing video: {str(e)}"
|
1292 |
+
|
1293 |
+
# Enhanced Gradio interface
|
1294 |
+
with gr.Blocks(title="Enhanced Rail Traffic Monitor") as demo:
|
1295 |
+
gr.Markdown("""
|
1296 |
+
# Enhanced Rail Traffic Monitoring System
|
1297 |
+
|
1298 |
+
## Features:
|
1299 |
+
- **Smart Object Tracking**: Uses enhanced similarity method combining geometric and visual features
|
1300 |
+
- **Visual Similarity Comparison**: Compares actual images within bounding boxes using multiple methods
|
1301 |
+
- **Comprehensive Red Zone Monitoring**: Reports ALL objects entering the red zone
|
1302 |
+
- **Enhanced Grouping**: Groups objects by class with detailed statistics
|
1303 |
+
- **Real-time Status**: Shows objects currently in zone, entered, and exited
|
1304 |
+
- **Configurable Warning System**: Alerts when objects stay in red zone for too long
|
1305 |
+
- **Configurable Parameters**: Adjust time window, similarity threshold, and warning criteria
|
1306 |
+
|
1307 |
+
## Enhanced Similarity Methods:
|
1308 |
+
- **Geometric Similarity** (40%): IoU + center distance
|
1309 |
+
- **Color Histogram** (25%): HSV color distribution comparison
|
1310 |
+
- **Structural Similarity** (25%): SSIM for shape and texture
|
1311 |
+
- **Feature Matching** (10%): ORB keypoint matching
|
1312 |
+
- **Default Threshold**: 0.35 (more lenient for better object matching)
|
1313 |
+
|
1314 |
+
## Red Zone Reporting:
|
1315 |
+
- **Objects Entered**: Total count of all objects that entered the red zone
|
1316 |
+
- **Currently in Zone**: Real-time list of objects currently in the red zone
|
1317 |
+
- **Objects Exited**: Count of objects that have left the red zone
|
1318 |
+
- **Detailed Grouping**: All statistics grouped by object class (train, car, person, etc.)
|
1319 |
+
|
1320 |
+
## Setup Instructions:
|
1321 |
+
|
1322 |
+
**Method 1 (Manual Protection Area):**
|
1323 |
+
1. Click 4 points on the image to define protection area
|
1324 |
+
2. Click "Reset Points" to start over
|
1325 |
+
|
1326 |
+
**Method 2 (Automatic Detection):**
|
1327 |
+
1. Click "Extract Protection Area" to automatically detect rail segments
|
1328 |
+
|
1329 |
+
**Processing:**
|
1330 |
+
3. Adjust detection confidence, processing frame rate, time window, similarity threshold, and warning threshold
|
1331 |
+
4. Click "Process Video" to analyze
|
1332 |
+
|
1333 |
+
The system will show comprehensive real-time results including:
|
1334 |
+
- All objects that entered the red zone (grouped by class)
|
1335 |
+
- Objects currently in red zone with detailed info
|
1336 |
+
- Objects that exited the red zone
|
1337 |
+
- Enhanced tracking with visual similarity comparison
|
1338 |
+
- Configurable warnings for objects staying too long in red zone
|
1339 |
+
- Complete tracking statistics
|
1340 |
+
""")
|
1341 |
+
|
1342 |
+
with gr.Row():
|
1343 |
+
with gr.Column():
|
1344 |
+
video_input = gr.Video(
|
1345 |
+
label="Input Video"
|
1346 |
+
)
|
1347 |
+
with gr.Row():
|
1348 |
+
confidence = gr.Slider(
|
1349 |
+
minimum=0.0,
|
1350 |
+
maximum=1.0,
|
1351 |
+
value=DEFAULT_CONFIDENCE,
|
1352 |
+
label="Detection Confidence Threshold",
|
1353 |
+
info="Minimum confidence for object detection"
|
1354 |
+
)
|
1355 |
+
fps_slider = gr.Slider(
|
1356 |
+
minimum=1,
|
1357 |
+
maximum=30,
|
1358 |
+
value=1,
|
1359 |
+
step=1,
|
1360 |
+
label="Processing Frame Rate (FPS)",
|
1361 |
+
info="Frames per second to process"
|
1362 |
+
)
|
1363 |
+
|
1364 |
+
with gr.Row():
|
1365 |
+
time_window_slider = gr.Slider(
|
1366 |
+
minimum=5,
|
1367 |
+
maximum=50,
|
1368 |
+
value=10,
|
1369 |
+
step=1,
|
1370 |
+
label="Time Window (frames)",
|
1371 |
+
info="Number of frames to consider for object similarity"
|
1372 |
+
)
|
1373 |
+
similarity_threshold_slider = gr.Slider(
|
1374 |
+
minimum=0.1,
|
1375 |
+
maximum=0.9,
|
1376 |
+
value=0.35,
|
1377 |
+
step=0.05,
|
1378 |
+
label="Similarity Threshold",
|
1379 |
+
info="Threshold for considering objects as the same (higher = stricter)"
|
1380 |
+
)
|
1381 |
+
|
1382 |
+
with gr.Row():
|
1383 |
+
warning_threshold_slider = gr.Slider(
|
1384 |
+
minimum=1,
|
1385 |
+
maximum=20,
|
1386 |
+
value=3,
|
1387 |
+
step=1,
|
1388 |
+
label="Warning Frame Threshold",
|
1389 |
+
info="Number of frames in red zone before triggering warning"
|
1390 |
+
)
|
1391 |
+
with gr.Column():
|
1392 |
+
preview_image = gr.Image(
|
1393 |
+
label="Click to Select Protection Area (Original Size)",
|
1394 |
+
interactive=True,
|
1395 |
+
show_label=True
|
1396 |
+
)
|
1397 |
+
|
1398 |
+
# Add segment selection dropdown
|
1399 |
+
segment_dropdown = gr.Dropdown(
|
1400 |
+
label="Selected Segments",
|
1401 |
+
choices=[],
|
1402 |
+
multiselect=True,
|
1403 |
+
interactive=True,
|
1404 |
+
visible=False,
|
1405 |
+
value=[]
|
1406 |
+
)
|
1407 |
+
|
1408 |
+
with gr.Row():
|
1409 |
+
reset_btn = gr.Button("Reset Points")
|
1410 |
+
extract_btn = gr.Button("Extract Protection Area")
|
1411 |
+
process_btn = gr.Button("🚀 Process Video")
|
1412 |
+
|
1413 |
+
with gr.Row():
|
1414 |
+
video_output = gr.Image(
|
1415 |
+
label="Live Processing Output",
|
1416 |
+
streaming=True,
|
1417 |
+
interactive=False,
|
1418 |
+
show_label=True,
|
1419 |
+
container=True,
|
1420 |
+
show_download_button=True
|
1421 |
+
)
|
1422 |
+
text_output = gr.Textbox(
|
1423 |
+
label="Detection Results & Red Zone Summary",
|
1424 |
+
lines=15,
|
1425 |
+
max_lines=20,
|
1426 |
+
show_copy_button=True
|
1427 |
+
)
|
1428 |
+
|
1429 |
+
# Handle video upload to populate preview
|
1430 |
+
video_input.change(
|
1431 |
+
fn=update_preview,
|
1432 |
+
inputs=[video_input],
|
1433 |
+
outputs=[preview_image, segment_dropdown]
|
1434 |
+
)
|
1435 |
+
|
1436 |
+
extract_btn.click(
|
1437 |
+
fn=extract_area_from_video,
|
1438 |
+
inputs=[video_input],
|
1439 |
+
outputs=[preview_image, text_output, segment_dropdown]
|
1440 |
+
)
|
1441 |
+
|
1442 |
+
segment_dropdown.change(
|
1443 |
+
fn=update_selected_segments,
|
1444 |
+
inputs=[segment_dropdown],
|
1445 |
+
outputs=[segment_dropdown]
|
1446 |
+
)
|
1447 |
+
|
1448 |
+
process_btn.click(
|
1449 |
+
fn=process_video_wrapper,
|
1450 |
+
inputs=[video_input, confidence, fps_slider, time_window_slider, similarity_threshold_slider, warning_threshold_slider],
|
1451 |
+
outputs=[video_output, text_output]
|
1452 |
+
)
|
1453 |
+
|
1454 |
+
# Add click event handler
|
1455 |
+
preview_image.select(
|
1456 |
+
fn=handle_image_click,
|
1457 |
+
inputs=[preview_image],
|
1458 |
+
outputs=[preview_image, text_output]
|
1459 |
+
)
|
1460 |
+
|
1461 |
+
# Add reset button handler
|
1462 |
+
reset_btn.click(
|
1463 |
+
fn=reset_points,
|
1464 |
+
inputs=[],
|
1465 |
+
outputs=[preview_image, text_output]
|
1466 |
+
)
|
1467 |
+
|
1468 |
+
if __name__ == "__main__":
|
1469 |
+
demo.queue().launch()
|
requirements.txt
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Core API dependencies
|
2 |
+
fastapi==0.110.0
|
3 |
+
uvicorn==0.27.1
|
4 |
+
python-multipart==0.0.9
|
5 |
+
pydantic==2.6.3
|
6 |
+
|
7 |
+
# Machine Learning and Computer Vision
|
8 |
+
torch==2.2.1
|
9 |
+
torchvision==0.17.1
|
10 |
+
ultralytics==8.1.28
|
11 |
+
opencv-python==4.9.0.80
|
12 |
+
numpy==1.26.3
|
13 |
+
Pillow==10.2.0
|
14 |
+
scikit-image==0.22.0
|
15 |
+
|
16 |
+
# Data handling and utilities
|
17 |
+
PyYAML==6.0.1
|
18 |
+
requests==2.31.0
|
19 |
+
python-dotenv==1.0.1
|
20 |
+
|
21 |
+
# Frontend (Gradio app)
|
22 |
+
gradio==4.19.2
|
23 |
+
|
24 |
+
# Development and testing
|
25 |
+
tqdm>=4.66.0
|
26 |
+
|
27 |
+
# Additional utilities (built-in modules - no need to install)
|
28 |
+
# os, io, sys, json, base64, logging, traceback, pathlib, threading, time, pickle, concurrent.futures, collections
|