Spaces:
Sleeping
Sleeping
File size: 14,298 Bytes
8b19012 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
# Copyright (C) 2024, Tri Dao.
import math
import torch
import torch.nn.functional as F
import pytest
from einops import rearrange
from causal_conv1d.causal_conv1d_interface import causal_conv1d_fn, causal_conv1d_ref
from causal_conv1d.causal_conv1d_interface import causal_conv1d_update, causal_conv1d_update_ref
from causal_conv1d.causal_conv1d_varlen import causal_conv1d_varlen_states, causal_conv1d_varlen_states_ref
@pytest.mark.parametrize("return_final_states", [False, True])
# @pytest.mark.parametrize("return_final_states", [True])
@pytest.mark.parametrize("has_initial_states", [False, True])
# @pytest.mark.parametrize("has_initial_states", [False])
@pytest.mark.parametrize("channel_last", [False, True])
# @pytest.mark.parametrize('channel_last', [True])
@pytest.mark.parametrize("itype", [torch.float32, torch.float16, torch.bfloat16])
# @pytest.mark.parametrize('itype', [torch.float16])
@pytest.mark.parametrize("silu_activation", [False, True])
# @pytest.mark.parametrize('silu_activation', [True])
@pytest.mark.parametrize("has_bias", [False, True])
# @pytest.mark.parametrize('has_bias', [True])
@pytest.mark.parametrize("width", [2, 3, 4])
# @pytest.mark.parametrize('width', [3])
@pytest.mark.parametrize(
"seqlen", [1, 2, 8, 16, 32, 64, 128, 129, 130, 151, 256, 372, 512, 784, 1024, 1134, 2048, 4096]
)
# @pytest.mark.parametrize('seqlen', [8, 16, 32, 64, 128, 256, 512, 784, 1024, 2048, 4096])
# @pytest.mark.parametrize('seqlen', [128])
@pytest.mark.parametrize('dim', [64, 4096 + 32])
# @pytest.mark.parametrize('dim', [64])
def test_causal_conv1d(dim, seqlen, width, has_bias, silu_activation, itype, channel_last, has_initial_states, return_final_states):
if not channel_last and (has_initial_states or return_final_states):
pytest.skip("Only channel_last support initial_states or return_final_states")
device = "cuda"
rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3)
if itype == torch.bfloat16:
rtol, atol = 1e-2, 5e-2
rtolw, atolw = (1e-3, 1e-3)
# set seed
torch.random.manual_seed(0)
batch = 2
# batch = 1
if not channel_last:
x = torch.randn(batch, 4096 + dim + 64, seqlen, device=device, dtype=itype)[:, 4096:4096 + dim, :].requires_grad_()
else:
x = rearrange(
torch.randn(batch, seqlen, 4096 + dim + 64, device=device, dtype=itype)[:, :, 4096:4096 + dim], "b s d -> b d s"
).requires_grad_()
weight = torch.randn(dim, width, device=device, dtype=torch.float32, requires_grad=True)
if has_bias:
bias = torch.randn(dim, device=device, dtype=torch.float32, requires_grad=True)
else:
bias = None
if has_initial_states:
initial_states = torch.randn(batch, width - 1, dim, device=device, dtype=itype).transpose(1, 2).requires_grad_()
else:
initial_states = None
x_ref = x.detach().clone().requires_grad_()
weight_ref = weight.detach().clone().requires_grad_()
bias_ref = bias.detach().clone().requires_grad_() if bias is not None else None
initial_states_ref = initial_states.detach().clone().requires_grad_() if initial_states is not None else None
activation = None if not silu_activation else "silu"
out = causal_conv1d_fn(x, weight, bias, initial_states=initial_states, return_final_states=return_final_states,
activation=activation)
out_ref = causal_conv1d_ref(x_ref, weight_ref, bias_ref, initial_states=initial_states_ref, return_final_states=return_final_states, activation=activation)
if return_final_states:
out, final_states = out
out_ref, final_states_ref = out_ref
print(f"Final states max diff: {(final_states - final_states_ref).abs().max().item()}")
print(f"Final states mean diff: {(final_states - final_states_ref).abs().mean().item()}")
assert torch.allclose(final_states, final_states_ref, rtol=rtol, atol=atol)
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)
if return_final_states:
out += F.sigmoid(final_states).sum(dim=-1, keepdim=True)
out_ref += F.sigmoid(final_states_ref).sum(dim=-1, keepdim=True)
g = torch.randn_like(out)
out.backward(g)
out_ref.backward(g)
print(f"dx max diff: {(x.grad - x_ref.grad).abs().max().item()}")
print(f"dweight max diff: {(weight.grad - weight_ref.grad).abs().max().item()}")
if has_bias:
print(f"dbias max diff: {(bias.grad - bias_ref.grad).abs().max().item()}")
if has_initial_states:
print(f"dinitial_states max diff: {(initial_states.grad - initial_states_ref.grad).abs().max().item()}")
assert torch.allclose(x.grad, x_ref.grad.to(dtype=itype), rtol=rtol, atol=atol)
assert torch.allclose(weight.grad, weight_ref.grad, rtol=rtolw, atol=atolw)
if has_bias:
assert torch.allclose(bias.grad, bias_ref.grad, rtol=rtolw, atol=atolw)
if has_initial_states:
assert torch.allclose(initial_states.grad, initial_states_ref.grad.to(dtype=itype), rtol=rtol, atol=atol)
@pytest.mark.parametrize("itype", [torch.float32, torch.float16, torch.bfloat16])
# @pytest.mark.parametrize('itype', [torch.float16])
@pytest.mark.parametrize("silu_activation", [False, True])
# @pytest.mark.parametrize('silu_activation', [True])
@pytest.mark.parametrize("has_bias", [False, True])
# @pytest.mark.parametrize('has_bias', [True])
@pytest.mark.parametrize("has_cache_seqlens", [False, True])
# @pytest.mark.parametrize('has_cache_seqlens', [True])
@pytest.mark.parametrize("seqlen", [1, 4, 5])
# @pytest.mark.parametrize('seqlen', [4])
@pytest.mark.parametrize("width", [2, 3, 4])
# @pytest.mark.parametrize('width', [4])
@pytest.mark.parametrize("dim", [2048, 2048 + 16, 4096])
# @pytest.mark.parametrize("dim", [2048])
def test_causal_conv1d_update(dim, width, seqlen, has_cache_seqlens, has_bias, silu_activation, itype):
device = "cuda"
rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3)
if itype == torch.bfloat16:
rtol, atol = 1e-2, 5e-2
rtolw, atolw = (1e-3, 1e-3)
# set seed
torch.random.manual_seed(0)
batch = 64
# batch = 1
# dim = 64
x = torch.randn(batch, seqlen, dim, device=device, dtype=itype).transpose(-1, -2)
state_len = torch.randint(width - 1, width + 10, (1,)).item()
conv_state = torch.randn(batch, state_len, dim, device=device, dtype=itype).transpose(-1, -2)
weight = torch.randn(dim, width, device=device, dtype=torch.float32, requires_grad=True)
if has_bias:
bias = torch.randn(dim, device=device, dtype=torch.float32, requires_grad=True)
else:
bias = None
conv_state_ref = conv_state.detach().clone()
activation = None if not silu_activation else "silu"
cache_seqlens = (torch.randint(0, 1024, (batch,), dtype=torch.int32, device=device)
if has_cache_seqlens else None)
out = causal_conv1d_update(x, conv_state, weight, bias, activation=activation, cache_seqlens=cache_seqlens)
out_ref = causal_conv1d_update_ref(x, conv_state_ref, weight, bias, activation=activation, cache_seqlens=cache_seqlens)
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
assert torch.equal(conv_state, conv_state_ref)
assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)
@pytest.mark.parametrize("itype", [torch.float32, torch.float16, torch.bfloat16])
# @pytest.mark.parametrize('itype', [torch.float16])
@pytest.mark.parametrize("dim", [2048, 2048 + 16, 4096])
# @pytest.mark.parametrize("dim", [2048])
def test_causal_conv1d_get_states(dim, itype):
device = "cuda"
# set seed
torch.random.manual_seed(0)
seqlens = torch.randint(1, 32, (100,), device=device)
total_seqlen = seqlens.sum().item()
x = torch.randn(total_seqlen, dim, device=device, dtype=itype)
cu_seqlens = F.pad(seqlens.cumsum(0), (1, 0))
state_len = 20
out = causal_conv1d_varlen_states(x, cu_seqlens, state_len)
out_ref = causal_conv1d_varlen_states_ref(x, cu_seqlens, state_len)
assert torch.equal(out, out_ref)
# @pytest.mark.parametrize("channel_last", [False, True])
@pytest.mark.parametrize('channel_last', [True])
# @pytest.mark.parametrize("itype", [torch.float32, torch.float16, torch.bfloat16])
@pytest.mark.parametrize('itype', [torch.bfloat16])
# @pytest.mark.parametrize("silu_activation", [False, True])
@pytest.mark.parametrize('silu_activation', [True])
# @pytest.mark.parametrize("has_bias", [False, True])
@pytest.mark.parametrize('has_bias', [True])
# @pytest.mark.parametrize("width", [2, 3, 4])
@pytest.mark.parametrize('width', [4])
@pytest.mark.parametrize(
# "seqlen", [8, 16, 32, 64, 128, 151, 256, 372, 512, 784, 1024, 1134, 2048, 4096]
"seqlen", [2048]
)
# @pytest.mark.parametrize('seqlen', [8, 16, 32, 64, 128, 256, 512, 784, 1024, 2048, 4096])
# @pytest.mark.parametrize('seqlen', [128])
def test_causal_conv1d_race_condition(seqlen, width, has_bias, silu_activation, itype, channel_last):
device = "cuda"
# set seed
torch.random.manual_seed(0)
batch = 2
# batch = 1
dim = 4096 + 32 # Try dim not divisible by 64
# dim = 64
if not channel_last:
x = torch.randn(batch, 4096 + dim + 64, seqlen, device=device, dtype=itype)[:, 4096:4096 + dim, :].requires_grad_()
else:
x = rearrange(
torch.randn(batch, seqlen, 4096 + dim + 64, device=device, dtype=itype)[:, :, 4096:4096 + dim], "b s d -> b d s"
).requires_grad_()
weight = torch.randn(dim, width, device=device, dtype=torch.float32, requires_grad=True)
if has_bias:
bias = torch.randn(dim, device=device, dtype=torch.float32, requires_grad=True)
else:
bias = None
activation = None if not silu_activation else "silu"
out0 = causal_conv1d_fn(x, weight, bias, activation=activation)
g = torch.randn_like(out0)
dx0, dw0, db0 = torch.autograd.grad(out0, (x, weight, bias), g)
dw_atol = 1e-4
db_atol = 1e-4
for i in range(10000):
out = causal_conv1d_fn(x, weight, bias, activation=activation)
dx, dw, db = torch.autograd.grad(out, (x, weight, bias), g)
dw_equal = torch.allclose(dw, dw0, atol=dw_atol)
# if not dw_equal:
# breakpoint()
if has_bias:
db_equal = torch.allclose(db, db0, atol=db_atol)
# if not db_equal:
# breakpoint()
assert torch.equal(out, out0)
assert torch.equal(dx, dx0)
assert dw_equal
if has_bias:
assert dw_equal
@pytest.mark.parametrize("itype", [torch.float32, torch.float16, torch.bfloat16])
# @pytest.mark.parametrize('itype', [torch.float16])
@pytest.mark.parametrize("silu_activation", [False, True])
# @pytest.mark.parametrize('silu_activation', [False])
@pytest.mark.parametrize("has_bias", [False, True])
# @pytest.mark.parametrize('has_bias', [False])
@pytest.mark.parametrize("width", [2, 3, 4])
# @pytest.mark.parametrize('width', [2])
@pytest.mark.parametrize(
"seqlen", [8, 16, 32, 64, 128, 151, 256, 372, 512, 784, 1024, 1134, 2048, 4096]
)
# @pytest.mark.parametrize('seqlen', [8, 16, 32, 64, 128, 256, 512, 784, 1024, 2048, 4096])
# @pytest.mark.parametrize('seqlen', [2048])
@pytest.mark.parametrize('dim', [64, 4096 + 32])
# @pytest.mark.parametrize('dim', [64])
def test_causal_conv1d_varlen(dim, seqlen, width, has_bias, silu_activation, itype):
device = "cuda"
rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3)
if itype == torch.bfloat16:
rtol, atol = 1e-2, 5e-2
rtolw, atolw = (1e-3, 1e-3)
# set seed
torch.random.manual_seed(seqlen + dim + width)
batch = 3
seqlens = []
for b in range(batch):
nsplits = torch.randint(1, 5, (1,)).item()
eos_pos = torch.randperm(seqlen - 1)[:nsplits].sort().values
seqlens.append(torch.diff(torch.cat([torch.tensor([-1]), eos_pos, torch.tensor([seqlen - 1])])).tolist())
assert sum(seqlens[-1]) == seqlen
assert all(s > 0 for s in seqlens[-1])
# Only support channel_last
x = rearrange(
torch.randn(batch, seqlen, 4096 + dim + 64, device=device, dtype=itype)[:, :, 4096:4096 + dim], "b s d -> b d s"
).requires_grad_()
weight = torch.randn(dim, width, device=device, dtype=torch.float32, requires_grad=True)
if has_bias:
bias = torch.randn(dim, device=device, dtype=torch.float32, requires_grad=True)
else:
bias = None
seq_idx = torch.stack([torch.cat([torch.full((s,), i, dtype=torch.int32, device=device) for i, s in enumerate(sl)], dim=0)
for sl in seqlens], dim=0)
x_ref = x.detach().clone().requires_grad_()
weight_ref = weight.detach().clone().requires_grad_()
bias_ref = bias.detach().clone().requires_grad_() if bias is not None else None
activation = None if not silu_activation else "silu"
out = causal_conv1d_fn(x, weight, bias, seq_idx=seq_idx, activation=activation)
out_ref = []
for b in range(batch):
out_ref_b = []
for x_s in torch.split(x_ref[[b]], seqlens[b], dim=2):
out_ref_b.append(causal_conv1d_ref(x_s, weight_ref, bias_ref, activation=activation))
out_ref.append(torch.cat(out_ref_b, dim=2))
out_ref = torch.cat(out_ref, dim=0)
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)
g = torch.randn_like(out)
out_ref.backward(g)
out.backward(g)
print(f"dx max diff: {(x.grad - x_ref.grad).abs().max().item()}")
print(f"dweight max diff: {(weight.grad - weight_ref.grad).abs().max().item()}")
if has_bias:
print(f"dbias max diff: {(bias.grad - bias_ref.grad).abs().max().item()}")
assert torch.allclose(x.grad, x_ref.grad.to(dtype=itype), rtol=rtol, atol=atol)
assert torch.allclose(weight.grad, weight_ref.grad, rtol=rtolw, atol=atolw)
if has_bias:
assert torch.allclose(bias.grad, bias_ref.grad, rtol=rtolw, atol=atolw)
|