File size: 5,016 Bytes
29bcdf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import streamlit as st
import tensorflow as tf
import numpy as np
import cv2
from PIL import Image
import io

# Set page config
st.set_page_config(
    page_title="Stone Classification",
    page_icon="🪨",
    layout="wide"
)

# Custom CSS to improve the appearance
st.markdown("""
    <style>
    .main {
        padding: 2rem;
    }
    .stButton>button {
        width: 100%;
        margin-top: 1rem;
    }
    .upload-text {
        text-align: center;
        padding: 2rem;
    }
    </style>
    """, unsafe_allow_html=True)

@st.cache_resource
def load_model():
    """Load the trained model"""
    return tf.keras.models.load_model('custom_model.h5')

def preprocess_image(image):
    """Preprocess the uploaded image"""
    # Convert to RGB if needed
    if image.mode != 'RGB':
        image = image.convert('RGB')
    
    # Convert to numpy array
    img_array = np.array(image)
    
    # Convert to RGB if needed
    if len(img_array.shape) == 2:  # Grayscale
        img_array = cv2.cvtColor(img_array, cv2.COLOR_GRAY2RGB)
    elif img_array.shape[2] == 4:  # RGBA
        img_array = cv2.cvtColor(img_array, cv2.COLOR_RGBA2RGB)
    
    # Preprocess image similar to training
    img_hsv = cv2.cvtColor(img_array, cv2.COLOR_RGB2HSV)
    img_hsv[:, :, 2] = cv2.equalizeHist(img_hsv[:, :, 2])
    img_array = cv2.cvtColor(img_hsv, cv2.COLOR_HSV2RGB)
    
    # Adjust brightness
    target_brightness = 150
    current_brightness = np.mean(img_array)
    alpha = target_brightness / (current_brightness + 1e-5)
    img_array = cv2.convertScaleAbs(img_array, alpha=alpha, beta=0)
    
    # Apply Gaussian blur
    img_array = cv2.GaussianBlur(img_array, (5, 5), 0)
    
    # Resize
    img_array = cv2.resize(img_array, (256, 256))
    
    # Normalize
    img_array = img_array.astype('float32') / 255.0
    
    return img_array

def main():
    # Title
    st.title("🪨 Stone Classification")
    st.write("Upload an image of a stone to classify its type")
    
    # Initialize session state for prediction if not exists
    if 'prediction' not in st.session_state:
        st.session_state.prediction = None
    if 'confidence' not in st.session_state:
        st.session_state.confidence = None
    
    # Create two columns
    col1, col2 = st.columns(2)
    
    with col1:
        st.subheader("Upload Image")
        uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
        
        if uploaded_file is not None:
            # Display uploaded image
            image = Image.open(uploaded_file)
            st.image(image, caption="Uploaded Image", use_column_width=True)
            
            # Add predict button
            if st.button("Predict"):
                try:
                    # Load model
                    model = load_model()
                    
                    # Preprocess image
                    processed_image = preprocess_image(image)
                    
                    # Make prediction
                    prediction = model.predict(np.expand_dims(processed_image, axis=0))
                    class_names = ['Artificial', 'Nature']  # Replace with your actual class names
                    
                    # Get prediction and confidence
                    predicted_class = class_names[np.argmax(prediction)]
                    confidence = float(np.max(prediction)) * 100
                    
                    # Store in session state
                    st.session_state.prediction = predicted_class
                    st.session_state.confidence = confidence
                    
                except Exception as e:
                    st.error(f"Error during prediction: {str(e)}")
    
    with col2:
        st.subheader("Prediction Results")
        if st.session_state.prediction is not None:
            # Create a card-like container for results
            results_container = st.container()
            with results_container:
                st.markdown("""
                    <style>
                    .prediction-card {
                        padding: 2rem;
                        border-radius: 0.5rem;
                        background-color: #f0f2f6;
                        margin: 1rem 0;
                    }
                    </style>
                    """, unsafe_allow_html=True)
                
                st.markdown("<div class='prediction-card'>", unsafe_allow_html=True)
                st.markdown(f"### Predicted Class: {st.session_state.prediction}")
                st.markdown(f"### Confidence: {st.session_state.confidence:.2f}%")
                st.markdown("</div>", unsafe_allow_html=True)
                
                # Add confidence bar
                st.progress(st.session_state.confidence / 100)
        else:
            st.info("Upload an image and click 'Predict' to see the results")
    
    # Footer
    st.markdown("---")
    st.markdown("Made with ❤️ using Streamlit")

if __name__ == "__main__":
    main()