Spaces:
Sleeping
Sleeping
File size: 11,271 Bytes
29bcdf2 bf836f1 29bcdf2 aed03ad 29bcdf2 bf836f1 29bcdf2 bf836f1 29bcdf2 029bf0e bf836f1 29bcdf2 7cbb26b 29bcdf2 7cbb26b 29bcdf2 7cbb26b 29bcdf2 7cbb26b 29bcdf2 bf836f1 29bcdf2 aed03ad 29bcdf2 aed03ad 29bcdf2 1f2f1b7 29bcdf2 aed03ad 29bcdf2 aed03ad 29bcdf2 aed03ad 29bcdf2 aed03ad 29bcdf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import streamlit as st
import tensorflow as tf
import numpy as np
import cv2
from PIL import Image
import io
import os
import cv2
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers, models
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
import matplotlib.pyplot as plt
import random
from tensorflow.keras import layers, models
from tensorflow.keras.applications import EfficientNetB0
from tensorflow.keras.applications.efficientnet import preprocess_input
from tensorflow.keras.layers import Lambda # Đảm bảo nhập Lambda từ tensorflow.keras.layers
# Set page config
st.set_page_config(
page_title="Stone Classification",
page_icon="🪨",
layout="wide"
)
# Custom CSS to improve the appearance
st.markdown("""
<style>
.main {
padding: 2rem;
}
.stButton>button {
width: 100%;
margin-top: 1rem;
}
.upload-text {
text-align: center;
padding: 2rem;
}
.prediction-card {
padding: 2rem;
border-radius: 0.5rem;
background-color: #f0f2f6;
margin: 1rem 0;
}
.top-predictions {
margin-top: 2rem;
padding: 1rem;
background-color: white;
border-radius: 0.5rem;
box-shadow: 0 1px 3px rgba(0,0,0,0.12);
}
.prediction-bar {
display: flex;
align-items: center;
margin: 0.5rem 0;
}
.prediction-label {
width: 100px;
font-weight: 500;
}
</style>
""", unsafe_allow_html=True)
@st.cache_resource
def load_model():
"""Load the trained model"""
return tf.keras.models.load_model('mlp_model.h5')
def color_histogram(image, bins=16):
# (Previous implementation remains the same)
hist_r = cv2.calcHist([image], [0], None, [bins], [0, 256]).flatten()
hist_g = cv2.calcHist([image], [1], None, [bins], [0, 256]).flatten()
hist_b = cv2.calcHist([image], [2], None, [bins], [0, 256]).flatten()
hist_r = hist_r / np.sum(hist_r)
hist_g = hist_g / np.sum(hist_g)
hist_b = hist_b / np.sum(hist_b)
return np.concatenate([hist_r, hist_g, hist_b])
def color_moments(image):
# (Previous implementation remains the same)
img = image.astype(np.float32) / 255.0
moments = []
for i in range(3): # For each color channel
channel = img[:,:,i]
mean = np.mean(channel)
std = np.std(channel)
skewness = np.mean(((channel - mean) / std) ** 3)
moments.extend([mean, std, skewness])
return np.array(moments)
def dominant_color_descriptor(image, k=3):
# (Previous implementation remains the same)
pixels = image.reshape(-1, 3)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2)
flags = cv2.KMEANS_RANDOM_CENTERS
try:
_, labels, centers = cv2.kmeans(pixels.astype(np.float32), k, None, criteria, 10, flags)
unique, counts = np.unique(labels, return_counts=True)
percentages = counts / len(labels)
dominant_colors = centers.flatten()
color_percentages = percentages
return np.concatenate([dominant_colors, color_percentages])
except:
return np.zeros(2 * k)
def color_coherence_vector(image, k=3):
# Convert to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# Convert the grayscale image to 8-bit format before applying threshold
gray = np.uint8(gray)
# Apply Otsu's thresholding method
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# Perform connected components analysis
num_labels, labels = cv2.connectedComponents(binary)
ccv = []
for i in range(1, min(k+1, num_labels)):
region_mask = (labels == i)
total_pixels = np.sum(region_mask)
coherent_pixels = total_pixels
ccv.extend([coherent_pixels, total_pixels])
while len(ccv) < 2 * k:
ccv.append(0)
return np.array(ccv)
# ViT and Feature Extraction Functions (from previous implementation)
# (Keeping the Patches, PatchEncoder, and create_vit_feature_extractor functions)
def extract_features(image):
"""
Extract multiple features from an image
"""
color_hist = color_histogram(image)
color_mom = color_moments(image)
dom_color = dominant_color_descriptor(image)
ccv = color_coherence_vector(image)
return np.concatenate([color_hist, color_mom, dom_color, ccv])
from transformers import ViTFeatureExtractor, ViTModel
import torch
from tensorflow.keras import layers, models
def create_vit_feature_extractor(input_shape=(256, 256, 3), num_classes=None):
# Xây dựng mô hình ViT đã huấn luyện sẵn từ TensorFlow
inputs = layers.Input(shape=input_shape)
# Thêm lớp Lambda để tiền xử lý ảnh
x = Lambda(preprocess_input, output_shape=input_shape)(inputs) # Xử lý ảnh đầu vào
# Bạn có thể thay thế phần này bằng một mô hình ViT đã được huấn luyện sẵn.
# Dưới đây là ví dụ dùng EfficientNetB0 thay vì ViT.
# Tạo mô hình ViT hoặc sử dụng mô hình khác đã được huấn luyện sẵn
vit_model = EfficientNetB0(include_top=False, weights='imagenet', input_tensor=x)
# Trích xuất đặc trưng từ mô hình ViT
x = layers.GlobalAveragePooling2D()(vit_model.output)
if num_classes:
x = layers.Dense(num_classes, activation='softmax')(x) # Thêm lớp phân loại (nếu có)
return models.Model(inputs=inputs, outputs=x)
def preprocess_image(image):
"""Preprocess the uploaded image"""
# # Convert to RGB if needed
# if image.mode != 'RGB':
# image = image.convert('RGB')
# Convert to numpy array
img_array = np.array(image)
# # Convert to RGB if needed
# if len(img_array.shape) == 2: # Grayscale
# img_array = cv2.cvtColor(img_array, cv2.COLOR_GRAY2RGB)
# elif img_array.shape[2] == 4: # RGBA
# img_array = cv2.cvtColor(img_array, cv2.COLOR_RGBA2RGB)
# # Preprocess image similar to training
# img_hsv = cv2.cvtColor(img_array, cv2.COLOR_RGB2HSV)
# img_hsv[:, :, 2] = cv2.equalizeHist(img_hsv[:, :, 2])
# img_array = cv2.cvtColor(img_hsv, cv2.COLOR_HSV2RGB)
# # Adjust brightness
# target_brightness = 150
# current_brightness = np.mean(img_array)
# alpha = target_brightness / (current_brightness + 1e-5)
# img_array = cv2.convertScaleAbs(img_array, alpha=alpha, beta=0)
# # Apply Gaussian blur
# img_array = cv2.GaussianBlur(img_array, (5, 5), 0)
# Resize
img_array = cv2.resize(img_array, (256, 256))
# Normalize
img_array = img_array.astype('float32') / 255.0
image_features = extract_features(img_array)
vit_extractor = create_vit_feature_extractor()
# Trích xuất đặc trưng ViT từ các hình ảnh
image_vit = vit_extractor.predict(img_array) # Dự đoán cho tập train
image_combined = np.concatenate([image_features, image_vit], axis=1)
scaler = StandardScaler()
image_scaled = scaler.fit_transform(image_combined)
return image_scaled
def get_top_predictions(prediction, class_names, top_k=5):
"""Get top k predictions with their probabilities"""
# Get indices of top k predictions
top_indices = prediction.argsort()[0][-top_k:][::-1]
# Get corresponding class names and probabilities
top_predictions = [
(class_names[i], float(prediction[0][i]) * 100)
for i in top_indices
]
return top_predictions
def main():
# Title
st.title("🪨 Stone Classification")
st.write("Upload an image of a stone to classify its type")
# Initialize session state for prediction if not exists
if 'predictions' not in st.session_state:
st.session_state.predictions = None
# Create two columns
col1, col2 = st.columns(2)
with col1:
st.subheader("Upload Image")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Display uploaded image
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
with st.spinner('Analyzing image...'):
try:
# Load model
model = load_model()
# Preprocess image
processed_image = preprocess_image(image)
# Make prediction
prediction = model.predict(np.expand_dims(processed_image, axis=0))
class_names = ['10', '6.5', '7', '7.5', '8', '8.5', '9', '9.2', '9.5', '9.7']
# Get top 5 predictions
top_predictions = get_top_predictions(prediction, class_names)
# Store in session state
st.session_state.predictions = top_predictions
except Exception as e:
st.error(f"Error during prediction: {str(e)}")
with col2:
st.subheader("Prediction Results")
if st.session_state.predictions is not None:
# Create a card-like container for results
results_container = st.container()
with results_container:
# Display main prediction
st.markdown("<div class='prediction-card'>", unsafe_allow_html=True)
top_class, top_confidence = st.session_state.predictions[0]
st.markdown(f"### Primary Prediction: Grade {top_class}")
st.markdown(f"### Confidence: {top_confidence:.2f}%")
st.markdown("</div>", unsafe_allow_html=True)
# Display confidence bar for top prediction
st.progress(top_confidence / 100)
# Display top 5 predictions
st.markdown("### Top 5 Predictions")
st.markdown("<div class='top-predictions'>", unsafe_allow_html=True)
# Create a Streamlit container for the predictions
for class_name, confidence in st.session_state.predictions:
col_label, col_bar, col_value = st.columns([2, 6, 2])
with col_label:
st.write(f"Grade {class_name}")
with col_bar:
st.progress(confidence / 100)
with col_value:
st.write(f"{confidence:.2f}%")
st.markdown("</div>", unsafe_allow_html=True)
else:
st.info("Upload an image and click 'Predict' to see the results")
# Footer
st.markdown("---")
st.markdown("Made with ❤️ using Streamlit")
if __name__ == "__main__":
main() |