Spaces:
Sleeping
Sleeping
File size: 6,245 Bytes
29bcdf2 aed03ad 29bcdf2 029bf0e 29bcdf2 7cbb26b 29bcdf2 7cbb26b 29bcdf2 7cbb26b 29bcdf2 7cbb26b 29bcdf2 aed03ad 29bcdf2 aed03ad 29bcdf2 1f2f1b7 29bcdf2 aed03ad 29bcdf2 aed03ad 29bcdf2 aed03ad 29bcdf2 aed03ad 29bcdf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import streamlit as st
import tensorflow as tf
import numpy as np
import cv2
from PIL import Image
import io
# Set page config
st.set_page_config(
page_title="Stone Classification",
page_icon="🪨",
layout="wide"
)
# Custom CSS to improve the appearance
st.markdown("""
<style>
.main {
padding: 2rem;
}
.stButton>button {
width: 100%;
margin-top: 1rem;
}
.upload-text {
text-align: center;
padding: 2rem;
}
.prediction-card {
padding: 2rem;
border-radius: 0.5rem;
background-color: #f0f2f6;
margin: 1rem 0;
}
.top-predictions {
margin-top: 2rem;
padding: 1rem;
background-color: white;
border-radius: 0.5rem;
box-shadow: 0 1px 3px rgba(0,0,0,0.12);
}
.prediction-bar {
display: flex;
align-items: center;
margin: 0.5rem 0;
}
.prediction-label {
width: 100px;
font-weight: 500;
}
</style>
""", unsafe_allow_html=True)
@st.cache_resource
def load_model():
"""Load the trained model"""
return tf.keras.models.load_model('custom_model.h5')
def preprocess_image(image):
"""Preprocess the uploaded image"""
# # Convert to RGB if needed
# if image.mode != 'RGB':
# image = image.convert('RGB')
# Convert to numpy array
img_array = np.array(image)
# # Convert to RGB if needed
# if len(img_array.shape) == 2: # Grayscale
# img_array = cv2.cvtColor(img_array, cv2.COLOR_GRAY2RGB)
# elif img_array.shape[2] == 4: # RGBA
# img_array = cv2.cvtColor(img_array, cv2.COLOR_RGBA2RGB)
# # Preprocess image similar to training
# img_hsv = cv2.cvtColor(img_array, cv2.COLOR_RGB2HSV)
# img_hsv[:, :, 2] = cv2.equalizeHist(img_hsv[:, :, 2])
# img_array = cv2.cvtColor(img_hsv, cv2.COLOR_HSV2RGB)
# # Adjust brightness
# target_brightness = 150
# current_brightness = np.mean(img_array)
# alpha = target_brightness / (current_brightness + 1e-5)
# img_array = cv2.convertScaleAbs(img_array, alpha=alpha, beta=0)
# # Apply Gaussian blur
# img_array = cv2.GaussianBlur(img_array, (5, 5), 0)
# Resize
img_array = cv2.resize(img_array, (256, 256))
# Normalize
img_array = img_array.astype('float32') / 255.0
return img_array
def get_top_predictions(prediction, class_names, top_k=5):
"""Get top k predictions with their probabilities"""
# Get indices of top k predictions
top_indices = prediction.argsort()[0][-top_k:][::-1]
# Get corresponding class names and probabilities
top_predictions = [
(class_names[i], float(prediction[0][i]) * 100)
for i in top_indices
]
return top_predictions
def main():
# Title
st.title("🪨 Stone Classification")
st.write("Upload an image of a stone to classify its type")
# Initialize session state for prediction if not exists
if 'predictions' not in st.session_state:
st.session_state.predictions = None
# Create two columns
col1, col2 = st.columns(2)
with col1:
st.subheader("Upload Image")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Display uploaded image
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
with st.spinner('Analyzing image...'):
try:
# Load model
model = load_model()
# Preprocess image
processed_image = preprocess_image(image)
# Make prediction
prediction = model.predict(np.expand_dims(processed_image, axis=0))
class_names = ['10', '6.5', '7', '7.5', '8', '8.5', '9', '9.2', '9.5', '9.7']
# Get top 5 predictions
top_predictions = get_top_predictions(prediction, class_names)
# Store in session state
st.session_state.predictions = top_predictions
except Exception as e:
st.error(f"Error during prediction: {str(e)}")
with col2:
st.subheader("Prediction Results")
if st.session_state.predictions is not None:
# Create a card-like container for results
results_container = st.container()
with results_container:
# Display main prediction
st.markdown("<div class='prediction-card'>", unsafe_allow_html=True)
top_class, top_confidence = st.session_state.predictions[0]
st.markdown(f"### Primary Prediction: Grade {top_class}")
st.markdown(f"### Confidence: {top_confidence:.2f}%")
st.markdown("</div>", unsafe_allow_html=True)
# Display confidence bar for top prediction
st.progress(top_confidence / 100)
# Display top 5 predictions
st.markdown("### Top 5 Predictions")
st.markdown("<div class='top-predictions'>", unsafe_allow_html=True)
# Create a Streamlit container for the predictions
for class_name, confidence in st.session_state.predictions:
col_label, col_bar, col_value = st.columns([2, 6, 2])
with col_label:
st.write(f"Grade {class_name}")
with col_bar:
st.progress(confidence / 100)
with col_value:
st.write(f"{confidence:.2f}%")
st.markdown("</div>", unsafe_allow_html=True)
else:
st.info("Upload an image and click 'Predict' to see the results")
# Footer
st.markdown("---")
st.markdown("Made with ❤️ using Streamlit")
if __name__ == "__main__":
main() |