File size: 6,245 Bytes
29bcdf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aed03ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29bcdf2
 
 
 
 
 
 
 
 
 
029bf0e
 
 
29bcdf2
 
 
 
7cbb26b
 
 
 
 
29bcdf2
7cbb26b
 
 
 
29bcdf2
7cbb26b
 
 
 
 
29bcdf2
7cbb26b
 
29bcdf2
 
 
 
 
 
 
 
 
aed03ad
 
 
 
 
 
 
 
 
 
 
 
 
29bcdf2
 
 
 
 
 
aed03ad
 
29bcdf2
 
 
 
 
 
 
 
 
 
 
 
1f2f1b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29bcdf2
 
 
aed03ad
29bcdf2
 
 
aed03ad
29bcdf2
aed03ad
 
 
29bcdf2
 
aed03ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29bcdf2
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import streamlit as st
import tensorflow as tf
import numpy as np
import cv2
from PIL import Image
import io

# Set page config
st.set_page_config(
    page_title="Stone Classification",
    page_icon="🪨",
    layout="wide"
)

# Custom CSS to improve the appearance
st.markdown("""
    <style>
    .main {
        padding: 2rem;
    }
    .stButton>button {
        width: 100%;
        margin-top: 1rem;
    }
    .upload-text {
        text-align: center;
        padding: 2rem;
    }
    .prediction-card {
        padding: 2rem;
        border-radius: 0.5rem;
        background-color: #f0f2f6;
        margin: 1rem 0;
    }
    .top-predictions {
        margin-top: 2rem;
        padding: 1rem;
        background-color: white;
        border-radius: 0.5rem;
        box-shadow: 0 1px 3px rgba(0,0,0,0.12);
    }
    .prediction-bar {
        display: flex;
        align-items: center;
        margin: 0.5rem 0;
    }
    .prediction-label {
        width: 100px;
        font-weight: 500;
    }
    </style>
    """, unsafe_allow_html=True)

@st.cache_resource
def load_model():
    """Load the trained model"""
    return tf.keras.models.load_model('custom_model.h5')

def preprocess_image(image):
    """Preprocess the uploaded image"""
    # # Convert to RGB if needed
    # if image.mode != 'RGB':
    #     image = image.convert('RGB')
    
    # Convert to numpy array
    img_array = np.array(image)
    
    # # Convert to RGB if needed
    # if len(img_array.shape) == 2:  # Grayscale
    #     img_array = cv2.cvtColor(img_array, cv2.COLOR_GRAY2RGB)
    # elif img_array.shape[2] == 4:  # RGBA
    #     img_array = cv2.cvtColor(img_array, cv2.COLOR_RGBA2RGB)
    
    # # Preprocess image similar to training
    # img_hsv = cv2.cvtColor(img_array, cv2.COLOR_RGB2HSV)
    # img_hsv[:, :, 2] = cv2.equalizeHist(img_hsv[:, :, 2])
    # img_array = cv2.cvtColor(img_hsv, cv2.COLOR_HSV2RGB)
    
    # # Adjust brightness
    # target_brightness = 150
    # current_brightness = np.mean(img_array)
    # alpha = target_brightness / (current_brightness + 1e-5)
    # img_array = cv2.convertScaleAbs(img_array, alpha=alpha, beta=0)
    
    # # Apply Gaussian blur
    # img_array = cv2.GaussianBlur(img_array, (5, 5), 0)
    
    # Resize
    img_array = cv2.resize(img_array, (256, 256))
    
    # Normalize
    img_array = img_array.astype('float32') / 255.0
    
    return img_array

def get_top_predictions(prediction, class_names, top_k=5):
    """Get top k predictions with their probabilities"""
    # Get indices of top k predictions
    top_indices = prediction.argsort()[0][-top_k:][::-1]
    
    # Get corresponding class names and probabilities
    top_predictions = [
        (class_names[i], float(prediction[0][i]) * 100)
        for i in top_indices
    ]
    
    return top_predictions

def main():
    # Title
    st.title("🪨 Stone Classification")
    st.write("Upload an image of a stone to classify its type")
    
    # Initialize session state for prediction if not exists
    if 'predictions' not in st.session_state:
        st.session_state.predictions = None
    
    # Create two columns
    col1, col2 = st.columns(2)
    
    with col1:
        st.subheader("Upload Image")
        uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
        
        if uploaded_file is not None:
            # Display uploaded image
            image = Image.open(uploaded_file)
            st.image(image, caption="Uploaded Image", use_column_width=True)

            with st.spinner('Analyzing image...'):
                try:
                    # Load model
                    model = load_model()
                    
                    # Preprocess image
                    processed_image = preprocess_image(image)
                    
                    # Make prediction
                    prediction = model.predict(np.expand_dims(processed_image, axis=0))
                    class_names = ['10', '6.5', '7', '7.5', '8', '8.5', '9', '9.2', '9.5', '9.7']
                    
                    # Get top 5 predictions
                    top_predictions = get_top_predictions(prediction, class_names)
                    
                    # Store in session state
                    st.session_state.predictions = top_predictions
                    
                except Exception as e:
                    st.error(f"Error during prediction: {str(e)}")
    
    with col2:
        st.subheader("Prediction Results")
        if st.session_state.predictions is not None:
            # Create a card-like container for results
            results_container = st.container()
            with results_container:
                # Display main prediction
                st.markdown("<div class='prediction-card'>", unsafe_allow_html=True)
                top_class, top_confidence = st.session_state.predictions[0]
                st.markdown(f"### Primary Prediction: Grade {top_class}")
                st.markdown(f"### Confidence: {top_confidence:.2f}%")
                st.markdown("</div>", unsafe_allow_html=True)
                
                # Display confidence bar for top prediction
                st.progress(top_confidence / 100)
                
                # Display top 5 predictions
                st.markdown("### Top 5 Predictions")
                st.markdown("<div class='top-predictions'>", unsafe_allow_html=True)
                
                # Create a Streamlit container for the predictions
                for class_name, confidence in st.session_state.predictions:
                    col_label, col_bar, col_value = st.columns([2, 6, 2])
                    with col_label:
                        st.write(f"Grade {class_name}")
                    with col_bar:
                        st.progress(confidence / 100)
                    with col_value:
                        st.write(f"{confidence:.2f}%")
                
                st.markdown("</div>", unsafe_allow_html=True)
        else:
            st.info("Upload an image and click 'Predict' to see the results")
    
    # Footer
    st.markdown("---")
    st.markdown("Made with ❤️ using Streamlit")

if __name__ == "__main__":
    main()