Spaces:
Sleeping
Sleeping
import streamlit as st | |
import tensorflow as tf | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
from tensorflow.keras import layers, models | |
from tensorflow.keras.applications import EfficientNetB0 | |
from tensorflow.keras.applications.efficientnet import preprocess_input | |
import joblib | |
import io | |
import os | |
# Add Cloudinary import | |
import cloudinary | |
import cloudinary.uploader | |
from cloudinary.utils import cloudinary_url | |
# Cloudinary Configuration | |
cloudinary.config( | |
cloud_name = os.getenv("CLOUD"), | |
api_key = os.getenv("API"), | |
api_secret = os.getenv("SECRET"), | |
secure=True | |
) | |
def upload_to_cloudinary(file_path, label): | |
""" | |
Upload file to Cloudinary with specified label as folder | |
""" | |
try: | |
# Upload to Cloudinary | |
upload_result = cloudinary.uploader.upload( | |
file_path, | |
folder=label, | |
public_id=f"{label}_{os.path.basename(file_path)}" | |
) | |
# Generate optimized URLs | |
optimize_url, _ = cloudinary_url( | |
upload_result['public_id'], | |
fetch_format="auto", | |
quality="auto" | |
) | |
auto_crop_url, _ = cloudinary_url( | |
upload_result['public_id'], | |
width=500, | |
height=500, | |
crop="auto", | |
gravity="auto" | |
) | |
return { | |
"upload_result": upload_result, | |
"optimize_url": optimize_url, | |
"auto_crop_url": auto_crop_url | |
} | |
except Exception as e: | |
return f"Error uploading to Cloudinary: {str(e)}" | |
def main(): | |
st.title("🨨 Phân loại đá") | |
st.write("Tải lên hình ảnh của một viên đá để phân loại loại của nó.") | |
# Load model and scaler | |
model, scaler = load_model_and_scaler() | |
if model is None or scaler is None: | |
st.error("Không thể tải mô hình hoặc bộ chuẩn hóa. Vui lòng đảm bảo rằng cả hai tệp đều tồn tại.") | |
return | |
# Initialize session state | |
if 'predictions' not in st.session_state: | |
st.session_state.predictions = None | |
if 'uploaded_image' not in st.session_state: | |
st.session_state.uploaded_image = None | |
col1, col2 = st.columns(2) | |
with col1: | |
st.subheader("Tải lên Hình ảnh") | |
uploaded_file = st.file_uploader("Chọn hình ảnh...", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
try: | |
image = Image.open(uploaded_file) | |
st.image(image, caption="Hình ảnh đã tải lên", use_column_width=True) | |
st.session_state.uploaded_image = image | |
with st.spinner('Đang phân tích hình ảnh...'): | |
processed_image = preprocess_image(image, scaler) | |
prediction = model.predict(processed_image, verbose=0) | |
class_names = ['10', '6.5', '7', '7.5', '8', '8.5', '9', '9.2', '9.5', '9.7'] | |
st.session_state.predictions = get_top_predictions(prediction, class_names) | |
except Exception as e: | |
st.error(f"Lỗi khi xử lý hình ảnh: {str(e)}") | |
with col2: | |
st.subheader("Kết quả Dự đoán") | |
if st.session_state.predictions: | |
# Display main prediction | |
top_class, top_confidence = st.session_state.predictions[0] | |
st.markdown( | |
f""" | |
<div class='prediction-card'> | |
<h3>Dự đoán chính: Màu {top_class}</h3> | |
<h3>Độ tin cậy: {top_confidence:.2f}%</h3> | |
</div> | |
""", | |
unsafe_allow_html=True | |
) | |
# Display confidence bar | |
st.progress(top_confidence / 100) | |
# Display top 5 predictions | |
st.markdown("### 5 Dự đoán hàng đầu") | |
st.markdown("<div class='top-predictions'>", unsafe_allow_html=True) | |
for class_name, confidence in st.session_state.predictions: | |
st.markdown( | |
f"**Màu {class_name}: Độ tin cậy {confidence:.2f}%**" | |
) | |
st.progress(confidence / 100) | |
st.markdown("</div>", unsafe_allow_html=True) | |
# User Confirmation Section | |
st.markdown("### Xác nhận độ chính xác của mô hình") | |
st.write("Giúp chúng tôi cải thiện mô hình bằng cách xác nhận độ chính xác của dự đoán.") | |
# Accuracy Radio Button | |
accuracy_option = st.radio( | |
"Dự đoán có chính xác không?", | |
["Chọn", "Chính xác", "Không chính xác"], | |
index=0 | |
) | |
if accuracy_option == "Không chính xác": | |
# Input for correct grade | |
correct_grade = st.selectbox( | |
"Chọn màu đá đúng:", | |
['10', '6.5', '7', '7.5', '8', '8.5', '9', '9.2', '9.5', '9.7'], | |
index=None, | |
placeholder="Chọn màu đúng" | |
) | |
# Upload button | |
if st.button("Tải lên Hình ảnh để sửa chữa"): | |
if correct_grade and st.session_state.uploaded_image: | |
# Save the image temporarily | |
temp_image_path = f"temp_image_{hash(uploaded_file.name)}.png" | |
st.session_state.uploaded_image.save(temp_image_path) | |
try: | |
# Upload to Cloudinary | |
cloudinary_result = upload_to_cloudinary(temp_image_path, correct_grade) | |
if isinstance(cloudinary_result, dict): | |
st.success(f"Hình ảnh đã được tải lên thành công cho màu {correct_grade}") | |
st.write(f"URL công khai: {cloudinary_result['upload_result']['secure_url']}") | |
else: | |
st.error(cloudinary_result) | |
# Clean up temporary file | |
os.remove(temp_image_path) | |
except Exception as e: | |
st.error(f"Tải lên thất bại: {str(e)}") | |
else: | |
st.warning("Vui lòng chọn màu đúng trước khi tải lên.") | |
else: | |
st.info("Tải lên hình ảnh để xem các dự đoán.") | |
st.markdown("---") | |
st.markdown("Tạo bởi ❤️ với Streamlit") | |
def load_model_and_scaler(): | |
"""Load the trained model and scaler""" | |
try: | |
model = tf.keras.models.load_model('mlp_model.h5') | |
# Tải scaler đã lưu | |
scaler = joblib.load('standard_scaler.pkl') | |
return model, scaler | |
except Exception as e: | |
st.error(f"Error loading model or scaler: {str(e)}") | |
return None, None | |
def color_histogram(image, bins=16): | |
"""Calculate color histogram features""" | |
hist_r = cv2.calcHist([image], [0], None, [bins], [0, 256]).flatten() | |
hist_g = cv2.calcHist([image], [1], None, [bins], [0, 256]).flatten() | |
hist_b = cv2.calcHist([image], [2], None, [bins], [0, 256]).flatten() | |
hist_r = hist_r / (np.sum(hist_r) + 1e-7) | |
hist_g = hist_g / (np.sum(hist_g) + 1e-7) | |
hist_b = hist_b / (np.sum(hist_b) + 1e-7) | |
return np.concatenate([hist_r, hist_g, hist_b]) | |
def color_moments(image): | |
"""Calculate color moments features""" | |
img = image.astype(np.float32) / 255.0 | |
moments = [] | |
for i in range(3): | |
channel = img[:,:,i] | |
mean = np.mean(channel) | |
std = np.std(channel) + 1e-7 | |
skewness = np.mean(((channel - mean) / std) ** 3) if std != 0 else 0 | |
moments.extend([mean, std, skewness]) | |
return np.array(moments) | |
def dominant_color_descriptor(image, k=3): | |
"""Calculate dominant color descriptor""" | |
pixels = image.reshape(-1, 3).astype(np.float32) | |
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2) | |
flags = cv2.KMEANS_RANDOM_CENTERS | |
try: | |
_, labels, centers = cv2.kmeans(pixels, k, None, criteria, 10, flags) | |
unique, counts = np.unique(labels, return_counts=True) | |
percentages = counts / len(labels) | |
return np.concatenate([centers.flatten(), percentages]) | |
except Exception: | |
return np.zeros(k * 4) | |
def color_coherence_vector(image, k=3): | |
"""Calculate color coherence vector""" | |
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) | |
gray = np.uint8(gray) | |
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) | |
num_labels, labels = cv2.connectedComponents(binary) | |
ccv = [] | |
for i in range(1, min(k+1, num_labels)): | |
region_mask = (labels == i) | |
total_pixels = np.sum(region_mask) | |
ccv.extend([total_pixels, total_pixels]) | |
ccv.extend([0] * (2 * k - len(ccv))) | |
return np.array(ccv[:2*k]) | |
def create_vit_feature_extractor(): | |
"""Create and cache the ViT feature extractor""" | |
input_shape = (256, 256, 3) | |
inputs = layers.Input(shape=input_shape) | |
x = layers.Lambda(preprocess_input)(inputs) | |
base_model = EfficientNetB0( | |
include_top=False, | |
weights='imagenet', | |
input_tensor=x | |
) | |
x = layers.GlobalAveragePooling2D()(base_model.output) | |
return models.Model(inputs=inputs, outputs=x) | |
def extract_features(image): | |
"""Extract all features from an image""" | |
# Traditional features | |
hist_features = color_histogram(image) | |
moment_features = color_moments(image) | |
dominant_features = dominant_color_descriptor(image) | |
ccv_features = color_coherence_vector(image) | |
traditional_features = np.concatenate([ | |
hist_features, | |
moment_features, | |
dominant_features, | |
ccv_features | |
]) | |
# Deep features using ViT | |
feature_extractor = create_vit_feature_extractor() | |
vit_features = feature_extractor.predict( | |
np.expand_dims(image, axis=0), | |
verbose=0 | |
) | |
# Combine all features | |
return np.concatenate([traditional_features, vit_features.flatten()]) | |
def preprocess_image(image, scaler): | |
"""Preprocess the uploaded image""" | |
# Convert to RGB if needed | |
if image.mode != 'RGB': | |
image = image.convert('RGB') | |
# Convert to numpy array and resize | |
img_array = np.array(image) | |
img_array = cv2.resize(img_array, (256, 256)) | |
img_array = img_array.astype('float32') / 255.0 | |
# Extract all features | |
features = extract_features(img_array) | |
# Scale features using the provided scaler | |
scaled_features = scaler.transform(features.reshape(1, -1)) | |
return scaled_features | |
def get_top_predictions(prediction, class_names): | |
# Extract the top 5 predictions with confidence values | |
probabilities = tf.nn.softmax(prediction[0]).numpy() | |
top_indices = np.argsort(probabilities)[-5:][::-1] | |
return [(class_names[i], probabilities[i] * 100) for i in top_indices] | |
if __name__ == "__main__": | |
main() | |