Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,10 @@ import tensorflow as tf
|
|
3 |
import numpy as np
|
4 |
import cv2
|
5 |
from PIL import Image
|
|
|
|
|
|
|
|
|
6 |
import io
|
7 |
|
8 |
# Set page config
|
@@ -12,7 +16,7 @@ st.set_page_config(
|
|
12 |
layout="wide"
|
13 |
)
|
14 |
|
15 |
-
# Custom CSS
|
16 |
st.markdown("""
|
17 |
<style>
|
18 |
.main {
|
@@ -22,14 +26,10 @@ st.markdown("""
|
|
22 |
width: 100%;
|
23 |
margin-top: 1rem;
|
24 |
}
|
25 |
-
.upload-text {
|
26 |
-
text-align: center;
|
27 |
-
padding: 2rem;
|
28 |
-
}
|
29 |
.prediction-card {
|
30 |
padding: 2rem;
|
31 |
border-radius: 0.5rem;
|
32 |
-
background-color: #
|
33 |
margin: 1rem 0;
|
34 |
}
|
35 |
.top-predictions {
|
@@ -39,109 +39,162 @@ st.markdown("""
|
|
39 |
border-radius: 0.5rem;
|
40 |
box-shadow: 0 1px 3px rgba(0,0,0,0.12);
|
41 |
}
|
42 |
-
.prediction-bar {
|
43 |
-
display: flex;
|
44 |
-
align-items: center;
|
45 |
-
margin: 0.5rem 0;
|
46 |
-
}
|
47 |
-
.prediction-label {
|
48 |
-
width: 100px;
|
49 |
-
font-weight: 500;
|
50 |
-
}
|
51 |
</style>
|
52 |
""", unsafe_allow_html=True)
|
53 |
|
|
|
54 |
@st.cache_resource
|
55 |
-
def
|
56 |
-
"""Load the trained model"""
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
def
|
60 |
-
"""
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
|
65 |
-
|
66 |
-
|
|
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
|
85 |
-
|
86 |
-
|
87 |
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
|
92 |
-
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
"""
|
103 |
-
try:
|
104 |
-
# Đăng nhập vào tài khoản Mega
|
105 |
-
mega = Mega()
|
106 |
-
m = mega.login('[email protected]', '01283315889')
|
107 |
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
-
except Exception as e:
|
120 |
-
return f"Lỗi khi tải lên Mega: {str(e)}"
|
121 |
-
|
122 |
def get_top_predictions(prediction, class_names, top_k=5):
|
123 |
"""Get top k predictions with their probabilities"""
|
124 |
-
# Get indices of top k predictions
|
125 |
top_indices = prediction.argsort()[0][-top_k:][::-1]
|
126 |
-
|
127 |
-
# Get corresponding class names and probabilities
|
128 |
-
top_predictions = [
|
129 |
(class_names[i], float(prediction[0][i]) * 100)
|
130 |
for i in top_indices
|
131 |
]
|
132 |
-
|
133 |
-
return top_predictions
|
134 |
|
135 |
def main():
|
136 |
-
# Title
|
137 |
st.title("🪨 Stone Classification")
|
138 |
st.write("Upload an image of a stone to classify its type")
|
139 |
|
140 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
if 'predictions' not in st.session_state:
|
142 |
st.session_state.predictions = None
|
143 |
|
144 |
-
# Create two columns
|
145 |
col1, col2 = st.columns(2)
|
146 |
|
147 |
with col1:
|
@@ -149,30 +202,19 @@ def main():
|
|
149 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
150 |
|
151 |
if uploaded_file is not None:
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
model = load_model()
|
160 |
-
|
161 |
-
# Preprocess image
|
162 |
-
processed_image = preprocess_image(image)
|
163 |
|
164 |
-
# Make prediction
|
165 |
-
prediction = model.predict(np.expand_dims(processed_image, axis=0))
|
166 |
class_names = ['10', '6.5', '7', '7.5', '8', '8.5', '9', '9.2', '9.5', '9.7']
|
|
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
# Store in session state
|
172 |
-
st.session_state.predictions = top_predictions
|
173 |
-
|
174 |
-
except Exception as e:
|
175 |
-
st.error(f"Error during prediction: {str(e)}")
|
176 |
|
177 |
with col2:
|
178 |
st.subheader("Prediction Results")
|
@@ -188,14 +230,14 @@ def main():
|
|
188 |
""",
|
189 |
unsafe_allow_html=True
|
190 |
)
|
191 |
-
|
192 |
# Display confidence bar
|
193 |
st.progress(top_confidence / 100)
|
194 |
-
|
195 |
# Display top 5 predictions
|
196 |
st.markdown("### Top 5 Predictions")
|
197 |
st.markdown("<div class='top-predictions'>", unsafe_allow_html=True)
|
198 |
-
|
199 |
for class_name, confidence in st.session_state.predictions:
|
200 |
cols = st.columns([2, 6, 2])
|
201 |
with cols[0]:
|
@@ -204,50 +246,11 @@ def main():
|
|
204 |
st.progress(confidence / 100)
|
205 |
with cols[2]:
|
206 |
st.write(f"{confidence:.2f}%")
|
207 |
-
|
208 |
-
st.markdown("</div>", unsafe_allow_html=True)
|
209 |
-
|
210 |
-
# User Survey
|
211 |
-
st.markdown("<div class='survey-card'>", unsafe_allow_html=True)
|
212 |
-
st.markdown("### Model Accuracy Survey")
|
213 |
-
st.write("Mô hình có dự đoán chính xác màu sắc của đá trong ảnh này không?")
|
214 |
-
|
215 |
-
# Accuracy Confirmation
|
216 |
-
accuracy = st.radio(
|
217 |
-
"Đánh giá độ chính xác",
|
218 |
-
["Chọn", "Chính xác", "Không chính xác"],
|
219 |
-
index=0
|
220 |
-
)
|
221 |
-
|
222 |
-
if accuracy == "Không chính xác":
|
223 |
-
# Color input for incorrect prediction
|
224 |
-
correct_color = st.text_input(
|
225 |
-
"Vui lòng nhập màu sắc chính xác của đá:",
|
226 |
-
help="Ví dụ: 10, 9.7, 9.5, 9.2, v.v."
|
227 |
-
)
|
228 |
-
|
229 |
-
if st.button("Gửi phản hồi và tải ảnh"):
|
230 |
-
if correct_color and st.session_state.uploaded_image:
|
231 |
-
# Save the image temporarily
|
232 |
-
temp_image_path = f"temp_image_{hash(uploaded_file.name)}.png"
|
233 |
-
st.session_state.uploaded_image.save(temp_image_path)
|
234 |
-
|
235 |
-
# Upload to Mega.nz
|
236 |
-
upload_result = upload_to_mega(temp_image_path, correct_color)
|
237 |
-
if "Upload thành công" in upload_result:
|
238 |
-
st.success(upload_result)
|
239 |
-
else:
|
240 |
-
st.error(upload_result)
|
241 |
-
|
242 |
-
# Clean up temporary file
|
243 |
-
os.remove(temp_image_path)
|
244 |
-
else:
|
245 |
-
st.warning("Vui lòng nhập màu sắc chính xác")
|
246 |
-
|
247 |
st.markdown("</div>", unsafe_allow_html=True)
|
248 |
else:
|
249 |
st.info("Upload an image to see the predictions")
|
250 |
-
|
251 |
st.markdown("---")
|
252 |
st.markdown("Made with ❤️ using Streamlit")
|
253 |
|
|
|
3 |
import numpy as np
|
4 |
import cv2
|
5 |
from PIL import Image
|
6 |
+
from tensorflow.keras import layers, models
|
7 |
+
from tensorflow.keras.applications import EfficientNetB0
|
8 |
+
from tensorflow.keras.applications.efficientnet import preprocess_input
|
9 |
+
import joblib
|
10 |
import io
|
11 |
|
12 |
# Set page config
|
|
|
16 |
layout="wide"
|
17 |
)
|
18 |
|
19 |
+
# Custom CSS with improved styling
|
20 |
st.markdown("""
|
21 |
<style>
|
22 |
.main {
|
|
|
26 |
width: 100%;
|
27 |
margin-top: 1rem;
|
28 |
}
|
|
|
|
|
|
|
|
|
29 |
.prediction-card {
|
30 |
padding: 2rem;
|
31 |
border-radius: 0.5rem;
|
32 |
+
background-color: #d7d7d9;
|
33 |
margin: 1rem 0;
|
34 |
}
|
35 |
.top-predictions {
|
|
|
39 |
border-radius: 0.5rem;
|
40 |
box-shadow: 0 1px 3px rgba(0,0,0,0.12);
|
41 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
</style>
|
43 |
""", unsafe_allow_html=True)
|
44 |
|
45 |
+
# Cache the model loading
|
46 |
@st.cache_resource
|
47 |
+
def load_model_and_scaler():
|
48 |
+
"""Load the trained model and scaler"""
|
49 |
+
try:
|
50 |
+
model = tf.keras.models.load_model('mlp_model.h5')
|
51 |
+
# Tải scaler đã lưu
|
52 |
+
scaler = joblib.load('standard_scaler.pkl')
|
53 |
+
return model, scaler
|
54 |
+
except Exception as e:
|
55 |
+
st.error(f"Error loading model or scaler: {str(e)}")
|
56 |
+
return None, None
|
57 |
|
58 |
+
def color_histogram(image, bins=16):
|
59 |
+
"""Calculate color histogram features"""
|
60 |
+
hist_r = cv2.calcHist([image], [0], None, [bins], [0, 256]).flatten()
|
61 |
+
hist_g = cv2.calcHist([image], [1], None, [bins], [0, 256]).flatten()
|
62 |
+
hist_b = cv2.calcHist([image], [2], None, [bins], [0, 256]).flatten()
|
63 |
|
64 |
+
hist_r = hist_r / (np.sum(hist_r) + 1e-7)
|
65 |
+
hist_g = hist_g / (np.sum(hist_g) + 1e-7)
|
66 |
+
hist_b = hist_b / (np.sum(hist_b) + 1e-7)
|
67 |
|
68 |
+
return np.concatenate([hist_r, hist_g, hist_b])
|
69 |
+
|
70 |
+
def color_moments(image):
|
71 |
+
"""Calculate color moments features"""
|
72 |
+
img = image.astype(np.float32) / 255.0
|
73 |
+
moments = []
|
74 |
|
75 |
+
for i in range(3):
|
76 |
+
channel = img[:,:,i]
|
77 |
+
mean = np.mean(channel)
|
78 |
+
std = np.std(channel) + 1e-7
|
79 |
+
skewness = np.mean(((channel - mean) / std) ** 3) if std != 0 else 0
|
80 |
+
moments.extend([mean, std, skewness])
|
81 |
|
82 |
+
return np.array(moments)
|
83 |
+
|
84 |
+
def dominant_color_descriptor(image, k=3):
|
85 |
+
"""Calculate dominant color descriptor"""
|
86 |
+
pixels = image.reshape(-1, 3).astype(np.float32)
|
87 |
|
88 |
+
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2)
|
89 |
+
flags = cv2.KMEANS_RANDOM_CENTERS
|
90 |
|
91 |
+
try:
|
92 |
+
_, labels, centers = cv2.kmeans(pixels, k, None, criteria, 10, flags)
|
93 |
+
unique, counts = np.unique(labels, return_counts=True)
|
94 |
+
percentages = counts / len(labels)
|
95 |
+
return np.concatenate([centers.flatten(), percentages])
|
96 |
+
except Exception:
|
97 |
+
return np.zeros(k * 4)
|
98 |
+
|
99 |
+
def color_coherence_vector(image, k=3):
|
100 |
+
"""Calculate color coherence vector"""
|
101 |
+
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
102 |
+
gray = np.uint8(gray)
|
103 |
|
104 |
+
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
105 |
+
num_labels, labels = cv2.connectedComponents(binary)
|
106 |
|
107 |
+
ccv = []
|
108 |
+
for i in range(1, min(k+1, num_labels)):
|
109 |
+
region_mask = (labels == i)
|
110 |
+
total_pixels = np.sum(region_mask)
|
111 |
+
ccv.extend([total_pixels, total_pixels])
|
112 |
+
|
113 |
+
ccv.extend([0] * (2 * k - len(ccv)))
|
114 |
+
return np.array(ccv[:2*k])
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
+
@st.cache_resource
|
117 |
+
def create_vit_feature_extractor():
|
118 |
+
"""Create and cache the ViT feature extractor"""
|
119 |
+
input_shape = (256, 256, 3)
|
120 |
+
inputs = layers.Input(shape=input_shape)
|
121 |
+
x = layers.Lambda(preprocess_input)(inputs)
|
122 |
+
|
123 |
+
base_model = EfficientNetB0(
|
124 |
+
include_top=False,
|
125 |
+
weights='imagenet',
|
126 |
+
input_tensor=x
|
127 |
+
)
|
128 |
+
|
129 |
+
x = layers.GlobalAveragePooling2D()(base_model.output)
|
130 |
+
return models.Model(inputs=inputs, outputs=x)
|
131 |
|
132 |
+
def extract_features(image):
|
133 |
+
"""Extract all features from an image"""
|
134 |
+
# Traditional features
|
135 |
+
hist_features = color_histogram(image)
|
136 |
+
moment_features = color_moments(image)
|
137 |
+
dominant_features = dominant_color_descriptor(image)
|
138 |
+
ccv_features = color_coherence_vector(image)
|
139 |
+
|
140 |
+
traditional_features = np.concatenate([
|
141 |
+
hist_features,
|
142 |
+
moment_features,
|
143 |
+
dominant_features,
|
144 |
+
ccv_features
|
145 |
+
])
|
146 |
+
|
147 |
+
# Deep features using ViT
|
148 |
+
feature_extractor = create_vit_feature_extractor()
|
149 |
+
vit_features = feature_extractor.predict(
|
150 |
+
np.expand_dims(image, axis=0),
|
151 |
+
verbose=0
|
152 |
+
)
|
153 |
+
|
154 |
+
# Combine all features
|
155 |
+
return np.concatenate([traditional_features, vit_features.flatten()])
|
156 |
|
157 |
+
def preprocess_image(image, scaler):
|
158 |
+
"""Preprocess the uploaded image"""
|
159 |
+
# Convert to RGB if needed
|
160 |
+
if image.mode != 'RGB':
|
161 |
+
image = image.convert('RGB')
|
162 |
+
|
163 |
+
# Convert to numpy array and resize
|
164 |
+
img_array = np.array(image)
|
165 |
+
img_array = cv2.resize(img_array, (256, 256))
|
166 |
+
img_array = img_array.astype('float32') / 255.0
|
167 |
+
|
168 |
+
# Extract all features
|
169 |
+
features = extract_features(img_array)
|
170 |
+
|
171 |
+
# Scale features using the provided scaler
|
172 |
+
scaled_features = scaler.transform(features.reshape(1, -1))
|
173 |
+
|
174 |
+
return scaled_features
|
175 |
|
|
|
|
|
|
|
176 |
def get_top_predictions(prediction, class_names, top_k=5):
|
177 |
"""Get top k predictions with their probabilities"""
|
|
|
178 |
top_indices = prediction.argsort()[0][-top_k:][::-1]
|
179 |
+
return [
|
|
|
|
|
180 |
(class_names[i], float(prediction[0][i]) * 100)
|
181 |
for i in top_indices
|
182 |
]
|
|
|
|
|
183 |
|
184 |
def main():
|
|
|
185 |
st.title("🪨 Stone Classification")
|
186 |
st.write("Upload an image of a stone to classify its type")
|
187 |
|
188 |
+
# Load model and scaler
|
189 |
+
model, scaler = load_model_and_scaler()
|
190 |
+
if model is None or scaler is None:
|
191 |
+
st.error("Failed to load model or scaler. Please ensure both files exist.")
|
192 |
+
return
|
193 |
+
|
194 |
+
# Initialize session state
|
195 |
if 'predictions' not in st.session_state:
|
196 |
st.session_state.predictions = None
|
197 |
|
|
|
198 |
col1, col2 = st.columns(2)
|
199 |
|
200 |
with col1:
|
|
|
202 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
203 |
|
204 |
if uploaded_file is not None:
|
205 |
+
try:
|
206 |
+
image = Image.open(uploaded_file)
|
207 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
208 |
+
|
209 |
+
with st.spinner('Analyzing image...'):
|
210 |
+
processed_image = preprocess_image(image, scaler)
|
211 |
+
prediction = model.predict(processed_image, verbose=0)
|
|
|
|
|
|
|
|
|
212 |
|
|
|
|
|
213 |
class_names = ['10', '6.5', '7', '7.5', '8', '8.5', '9', '9.2', '9.5', '9.7']
|
214 |
+
st.session_state.predictions = get_top_predictions(prediction, class_names)
|
215 |
|
216 |
+
except Exception as e:
|
217 |
+
st.error(f"Error processing image: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
|
219 |
with col2:
|
220 |
st.subheader("Prediction Results")
|
|
|
230 |
""",
|
231 |
unsafe_allow_html=True
|
232 |
)
|
233 |
+
|
234 |
# Display confidence bar
|
235 |
st.progress(top_confidence / 100)
|
236 |
+
|
237 |
# Display top 5 predictions
|
238 |
st.markdown("### Top 5 Predictions")
|
239 |
st.markdown("<div class='top-predictions'>", unsafe_allow_html=True)
|
240 |
+
|
241 |
for class_name, confidence in st.session_state.predictions:
|
242 |
cols = st.columns([2, 6, 2])
|
243 |
with cols[0]:
|
|
|
246 |
st.progress(confidence / 100)
|
247 |
with cols[2]:
|
248 |
st.write(f"{confidence:.2f}%")
|
249 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
st.markdown("</div>", unsafe_allow_html=True)
|
251 |
else:
|
252 |
st.info("Upload an image to see the predictions")
|
253 |
+
|
254 |
st.markdown("---")
|
255 |
st.markdown("Made with ❤️ using Streamlit")
|
256 |
|