Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,10 +4,11 @@ import numpy as np
|
|
4 |
import cv2
|
5 |
from PIL import Image
|
6 |
import io
|
|
|
7 |
|
8 |
# Set page config
|
9 |
st.set_page_config(
|
10 |
-
page_title="Stone Classification",
|
11 |
page_icon="🪨",
|
12 |
layout="wide"
|
13 |
)
|
@@ -26,96 +27,107 @@ st.markdown("""
|
|
26 |
text-align: center;
|
27 |
padding: 2rem;
|
28 |
}
|
29 |
-
|
30 |
</style>
|
31 |
""", unsafe_allow_html=True)
|
32 |
-
# .prediction-card {
|
33 |
-
# padding: 2rem;
|
34 |
-
# border-radius: 0.5rem;
|
35 |
-
# background-color: #f0f2f6;
|
36 |
-
# margin: 1rem 0;
|
37 |
-
# }
|
38 |
-
# .top-predictions {
|
39 |
-
# margin-top: 2rem;
|
40 |
-
# padding: 1rem;
|
41 |
-
# background-color: white;
|
42 |
-
# border-radius: 0.5rem;
|
43 |
-
# box-shadow: 0 1px 3px rgba(0,0,0,0.12);
|
44 |
-
# }
|
45 |
-
# .prediction-bar {
|
46 |
-
# display: flex;
|
47 |
-
# align-items: center;
|
48 |
-
# margin: 0.5rem 0;
|
49 |
-
# }
|
50 |
-
# .prediction-label {
|
51 |
-
# width: 100px;
|
52 |
-
# font-weight: 500;
|
53 |
-
# }
|
54 |
-
@st.cache_resource
|
55 |
-
def load_model():
|
56 |
-
"""Load the trained model"""
|
57 |
-
return tf.keras.models.load_model('custom_model.h5')
|
58 |
|
59 |
-
def
|
60 |
-
"""
|
61 |
-
|
62 |
-
|
63 |
-
# image = image.convert('RGB')
|
64 |
-
|
65 |
-
# Convert to numpy array
|
66 |
-
img_array = np.array(image)
|
67 |
|
68 |
-
#
|
69 |
-
|
70 |
-
|
71 |
-
# elif img_array.shape[2] == 4: # RGBA
|
72 |
-
# img_array = cv2.cvtColor(img_array, cv2.COLOR_RGBA2RGB)
|
73 |
|
74 |
-
#
|
75 |
-
|
76 |
-
|
77 |
-
# img_array = cv2.cvtColor(img_hsv, cv2.COLOR_HSV2RGB)
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
#
|
86 |
-
|
87 |
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
img_array = cv2.resize(img_array, (256, 256))
|
90 |
-
|
91 |
-
# Normalize
|
92 |
img_array = img_array.astype('float32') / 255.0
|
93 |
-
|
94 |
return img_array
|
95 |
|
96 |
def get_top_predictions(prediction, class_names, top_k=5):
|
97 |
"""Get top k predictions with their probabilities"""
|
98 |
-
# Get indices of top k predictions
|
99 |
top_indices = prediction.argsort()[0][-top_k:][::-1]
|
100 |
-
|
101 |
-
# Get corresponding class names and probabilities
|
102 |
top_predictions = [
|
103 |
(class_names[i], float(prediction[0][i]) * 100)
|
104 |
for i in top_indices
|
105 |
]
|
106 |
-
|
107 |
return top_predictions
|
108 |
|
109 |
def main():
|
110 |
-
|
111 |
-
st.
|
112 |
-
st.write("Upload an image of a stone to classify its type")
|
113 |
|
114 |
-
# Initialize session state for prediction if not exists
|
115 |
if 'predictions' not in st.session_state:
|
116 |
st.session_state.predictions = None
|
117 |
|
118 |
-
# Create two columns
|
119 |
col1, col2 = st.columns(2)
|
120 |
|
121 |
with col1:
|
@@ -123,53 +135,60 @@ def main():
|
|
123 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
124 |
|
125 |
if uploaded_file is not None:
|
126 |
-
# Display uploaded image
|
127 |
image = Image.open(uploaded_file)
|
128 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
129 |
|
130 |
-
with st.spinner('
|
131 |
try:
|
132 |
-
# Load
|
133 |
-
|
134 |
|
135 |
-
#
|
136 |
-
|
|
|
|
|
137 |
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
class_names = ['10', '6.5', '7', '7.5', '8', '8.5', '9', '9.2', '9.5', '9.7']
|
|
|
141 |
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
# Store in session state
|
146 |
-
st.session_state.predictions =
|
147 |
|
148 |
except Exception as e:
|
149 |
-
st.error(f"Error during
|
150 |
|
151 |
with col2:
|
152 |
-
st.subheader("
|
153 |
if st.session_state.predictions is not None:
|
154 |
-
|
155 |
-
|
156 |
-
with results_container:
|
157 |
-
# Display main prediction
|
158 |
-
st.markdown("<div class='prediction-card'>", unsafe_allow_html=True)
|
159 |
-
top_class, top_confidence = st.session_state.predictions[0]
|
160 |
-
st.markdown(f"### Primary Prediction: Grade {top_class}")
|
161 |
-
st.markdown(f"### Confidence: {top_confidence:.2f}%")
|
162 |
-
st.markdown("</div>", unsafe_allow_html=True)
|
163 |
|
164 |
-
# Display
|
|
|
|
|
|
|
165 |
st.progress(top_confidence / 100)
|
166 |
|
167 |
-
# Display
|
168 |
-
st.markdown("
|
169 |
-
|
170 |
-
|
171 |
-
# Create a Streamlit container for the predictions
|
172 |
-
for class_name, confidence in st.session_state.predictions:
|
173 |
col_label, col_bar, col_value = st.columns([2, 6, 2])
|
174 |
with col_label:
|
175 |
st.write(f"Grade {class_name}")
|
@@ -178,11 +197,9 @@ def main():
|
|
178 |
with col_value:
|
179 |
st.write(f"{confidence:.2f}%")
|
180 |
|
181 |
-
st.markdown("
|
182 |
else:
|
183 |
-
st.info("Upload an image
|
184 |
-
|
185 |
-
# Footer
|
186 |
-
st.markdown("---")
|
187 |
if __name__ == "__main__":
|
188 |
main()
|
|
|
4 |
import cv2
|
5 |
from PIL import Image
|
6 |
import io
|
7 |
+
import torch
|
8 |
|
9 |
# Set page config
|
10 |
st.set_page_config(
|
11 |
+
page_title="Stone Detection & Classification",
|
12 |
page_icon="🪨",
|
13 |
layout="wide"
|
14 |
)
|
|
|
27 |
text-align: center;
|
28 |
padding: 2rem;
|
29 |
}
|
|
|
30 |
</style>
|
31 |
""", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
def resize_to_square(image):
|
34 |
+
"""Resize image to square while maintaining aspect ratio"""
|
35 |
+
size = max(image.shape[0], image.shape[1])
|
36 |
+
new_img = np.zeros((size, size, 3), dtype=np.uint8)
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
# Calculate position to paste original image
|
39 |
+
x_center = (size - image.shape[1]) // 2
|
40 |
+
y_center = (size - image.shape[0]) // 2
|
|
|
|
|
41 |
|
42 |
+
# Copy the image into center of result image
|
43 |
+
new_img[y_center:y_center+image.shape[0],
|
44 |
+
x_center:x_center+image.shape[1]] = image
|
|
|
45 |
|
46 |
+
return new_img
|
47 |
+
|
48 |
+
@st.cache_resource
|
49 |
+
def load_models():
|
50 |
+
"""Load both object detection and classification models"""
|
51 |
+
# Load object detection model
|
52 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
53 |
+
object_detection_model = torch.load("fasterrcnn_resnet50_fpn_270824.pth", map_location=device)
|
54 |
+
object_detection_model.to(device)
|
55 |
+
object_detection_model.eval()
|
56 |
|
57 |
+
# Load classification model
|
58 |
+
classification_model = tf.keras.models.load_model('custom_model.h5')
|
59 |
|
60 |
+
return object_detection_model, classification_model, device
|
61 |
+
|
62 |
+
def perform_object_detection(image, model, device):
|
63 |
+
original_size = image.size
|
64 |
+
target_size = (256, 256)
|
65 |
+
frame_resized = cv2.resize(np.array(image), dsize=target_size, interpolation=cv2.INTER_AREA)
|
66 |
+
frame_rgb = cv2.cvtColor(frame_resized, cv2.COLOR_RGB2BGR).astype(np.float32)
|
67 |
+
frame_rgb /= 255.0
|
68 |
+
frame_rgb = frame_rgb.transpose(2, 0, 1)
|
69 |
+
frame_rgb = torch.from_numpy(frame_rgb).float().unsqueeze(0).to(device)
|
70 |
+
|
71 |
+
with torch.no_grad():
|
72 |
+
outputs = model(frame_rgb)
|
73 |
+
|
74 |
+
boxes = outputs[0]['boxes'].cpu().detach().numpy().astype(np.int32)
|
75 |
+
labels = outputs[0]['labels'].cpu().detach().numpy().astype(np.int32)
|
76 |
+
scores = outputs[0]['scores'].cpu().detach().numpy()
|
77 |
+
|
78 |
+
result_image = frame_resized.copy()
|
79 |
+
cropped_images = []
|
80 |
+
detected_boxes = []
|
81 |
+
|
82 |
+
for i in range(len(boxes)):
|
83 |
+
if scores[i] >= 0.75:
|
84 |
+
x1, y1, x2, y2 = boxes[i]
|
85 |
+
if (int(labels[i])-1) == 1 or (int(labels[i])-1) == 0:
|
86 |
+
color = (0, 0, 255)
|
87 |
+
label_text = 'Flame stone surface'
|
88 |
+
|
89 |
+
# Scale coordinates to original image size
|
90 |
+
original_h, original_w = original_size[::-1]
|
91 |
+
scale_h, scale_w = original_h / target_size[0], original_w / target_size[1]
|
92 |
+
x1_orig, y1_orig = int(x1 * scale_w), int(y1 * scale_h)
|
93 |
+
x2_orig, y2_orig = int(x2 * scale_w), int(y2 * scale_h)
|
94 |
+
|
95 |
+
# Crop and process detected region
|
96 |
+
cropped_image = np.array(image)[y1_orig:y2_orig, x1_orig:x2_orig]
|
97 |
+
resized_crop = resize_to_square(cropped_image)
|
98 |
+
cropped_images.append(resized_crop)
|
99 |
+
detected_boxes.append((x1, y1, x2, y2))
|
100 |
+
|
101 |
+
# Draw bounding box
|
102 |
+
cv2.rectangle(result_image, (x1, y1), (x2, y2), color, 3)
|
103 |
+
cv2.putText(result_image, label_text, (x1, y1 - 10),
|
104 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
105 |
+
|
106 |
+
return Image.fromarray(result_image), cropped_images, detected_boxes
|
107 |
+
|
108 |
+
def preprocess_image(image):
|
109 |
+
"""Preprocess the image for classification"""
|
110 |
+
img_array = np.array(image)
|
111 |
img_array = cv2.resize(img_array, (256, 256))
|
|
|
|
|
112 |
img_array = img_array.astype('float32') / 255.0
|
|
|
113 |
return img_array
|
114 |
|
115 |
def get_top_predictions(prediction, class_names, top_k=5):
|
116 |
"""Get top k predictions with their probabilities"""
|
|
|
117 |
top_indices = prediction.argsort()[0][-top_k:][::-1]
|
|
|
|
|
118 |
top_predictions = [
|
119 |
(class_names[i], float(prediction[0][i]) * 100)
|
120 |
for i in top_indices
|
121 |
]
|
|
|
122 |
return top_predictions
|
123 |
|
124 |
def main():
|
125 |
+
st.title("🪨 Stone Detection & Classification")
|
126 |
+
st.write("Upload an image to detect and classify stone surfaces")
|
|
|
127 |
|
|
|
128 |
if 'predictions' not in st.session_state:
|
129 |
st.session_state.predictions = None
|
130 |
|
|
|
131 |
col1, col2 = st.columns(2)
|
132 |
|
133 |
with col1:
|
|
|
135 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
136 |
|
137 |
if uploaded_file is not None:
|
|
|
138 |
image = Image.open(uploaded_file)
|
139 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
140 |
|
141 |
+
with st.spinner('Processing image...'):
|
142 |
try:
|
143 |
+
# Load both models
|
144 |
+
object_detection_model, classification_model, device = load_models()
|
145 |
|
146 |
+
# Perform object detection
|
147 |
+
result_image, cropped_images, detected_boxes = perform_object_detection(
|
148 |
+
image, object_detection_model, device
|
149 |
+
)
|
150 |
|
151 |
+
if not cropped_images:
|
152 |
+
st.warning("No stone surfaces detected in the image")
|
153 |
+
return
|
154 |
+
|
155 |
+
# Display detection results
|
156 |
+
st.subheader("Detection Results")
|
157 |
+
st.image(result_image, caption="Detected Stone Surfaces", use_column_width=True)
|
158 |
+
|
159 |
+
# Process each detected region
|
160 |
class_names = ['10', '6.5', '7', '7.5', '8', '8.5', '9', '9.2', '9.5', '9.7']
|
161 |
+
all_predictions = []
|
162 |
|
163 |
+
for idx, cropped_image in enumerate(cropped_images):
|
164 |
+
processed_image = preprocess_image(cropped_image)
|
165 |
+
prediction = classification_model.predict(
|
166 |
+
np.expand_dims(processed_image, axis=0)
|
167 |
+
)
|
168 |
+
top_predictions = get_top_predictions(prediction, class_names)
|
169 |
+
all_predictions.append(top_predictions)
|
170 |
|
171 |
# Store in session state
|
172 |
+
st.session_state.predictions = all_predictions
|
173 |
|
174 |
except Exception as e:
|
175 |
+
st.error(f"Error during processing: {str(e)}")
|
176 |
|
177 |
with col2:
|
178 |
+
st.subheader("Classification Results")
|
179 |
if st.session_state.predictions is not None:
|
180 |
+
for idx, predictions in enumerate(st.session_state.predictions):
|
181 |
+
st.markdown(f"### Region {idx + 1}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
+
# Display main prediction
|
184 |
+
top_class, top_confidence = predictions[0]
|
185 |
+
st.markdown(f"**Primary Prediction: Grade {top_class}**")
|
186 |
+
st.markdown(f"**Confidence: {top_confidence:.2f}%**")
|
187 |
st.progress(top_confidence / 100)
|
188 |
|
189 |
+
# Display all predictions for this region
|
190 |
+
st.markdown("**Top 5 Predictions**")
|
191 |
+
for class_name, confidence in predictions:
|
|
|
|
|
|
|
192 |
col_label, col_bar, col_value = st.columns([2, 6, 2])
|
193 |
with col_label:
|
194 |
st.write(f"Grade {class_name}")
|
|
|
197 |
with col_value:
|
198 |
st.write(f"{confidence:.2f}%")
|
199 |
|
200 |
+
st.markdown("---")
|
201 |
else:
|
202 |
+
st.info("Upload an image to see detection and classification results")
|
203 |
+
|
|
|
|
|
204 |
if __name__ == "__main__":
|
205 |
main()
|