Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,21 +3,12 @@ import tensorflow as tf
|
|
3 |
import numpy as np
|
4 |
import cv2
|
5 |
from PIL import Image
|
6 |
-
import io
|
7 |
-
import os
|
8 |
-
import cv2
|
9 |
-
import numpy as np
|
10 |
-
from tensorflow import keras
|
11 |
-
from tensorflow.keras import layers, models
|
12 |
-
from sklearn.preprocessing import StandardScaler
|
13 |
-
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
|
14 |
-
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
|
15 |
-
import matplotlib.pyplot as plt
|
16 |
-
import random
|
17 |
from tensorflow.keras import layers, models
|
18 |
from tensorflow.keras.applications import EfficientNetB0
|
19 |
from tensorflow.keras.applications.efficientnet import preprocess_input
|
20 |
-
from
|
|
|
|
|
21 |
# Set page config
|
22 |
st.set_page_config(
|
23 |
page_title="Stone Classification",
|
@@ -25,7 +16,7 @@ st.set_page_config(
|
|
25 |
layout="wide"
|
26 |
)
|
27 |
|
28 |
-
# Custom CSS
|
29 |
st.markdown("""
|
30 |
<style>
|
31 |
.main {
|
@@ -35,10 +26,6 @@ st.markdown("""
|
|
35 |
width: 100%;
|
36 |
margin-top: 1rem;
|
37 |
}
|
38 |
-
.upload-text {
|
39 |
-
text-align: center;
|
40 |
-
padding: 2rem;
|
41 |
-
}
|
42 |
.prediction-card {
|
43 |
padding: 2rem;
|
44 |
border-radius: 0.5rem;
|
@@ -52,202 +39,159 @@ st.markdown("""
|
|
52 |
border-radius: 0.5rem;
|
53 |
box-shadow: 0 1px 3px rgba(0,0,0,0.12);
|
54 |
}
|
55 |
-
.prediction-bar {
|
56 |
-
display: flex;
|
57 |
-
align-items: center;
|
58 |
-
margin: 0.5rem 0;
|
59 |
-
}
|
60 |
-
.prediction-label {
|
61 |
-
width: 100px;
|
62 |
-
font-weight: 500;
|
63 |
-
}
|
64 |
</style>
|
65 |
""", unsafe_allow_html=True)
|
66 |
|
67 |
@st.cache_resource
|
68 |
def load_model():
|
69 |
"""Load the trained model"""
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
72 |
def color_histogram(image, bins=16):
|
73 |
-
|
74 |
hist_r = cv2.calcHist([image], [0], None, [bins], [0, 256]).flatten()
|
75 |
hist_g = cv2.calcHist([image], [1], None, [bins], [0, 256]).flatten()
|
76 |
hist_b = cv2.calcHist([image], [2], None, [bins], [0, 256]).flatten()
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
81 |
|
82 |
return np.concatenate([hist_r, hist_g, hist_b])
|
83 |
|
84 |
def color_moments(image):
|
85 |
-
|
86 |
img = image.astype(np.float32) / 255.0
|
87 |
-
|
88 |
moments = []
|
89 |
-
|
|
|
90 |
channel = img[:,:,i]
|
91 |
-
|
92 |
mean = np.mean(channel)
|
93 |
-
std = np.std(channel)
|
94 |
-
skewness = np.mean(((channel - mean) / std) ** 3)
|
95 |
-
|
96 |
moments.extend([mean, std, skewness])
|
97 |
|
98 |
return np.array(moments)
|
99 |
|
100 |
def dominant_color_descriptor(image, k=3):
|
101 |
-
|
102 |
-
pixels = image.reshape(-1, 3)
|
103 |
|
104 |
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2)
|
105 |
flags = cv2.KMEANS_RANDOM_CENTERS
|
106 |
|
107 |
try:
|
108 |
-
_, labels, centers = cv2.kmeans(pixels
|
109 |
-
|
110 |
unique, counts = np.unique(labels, return_counts=True)
|
111 |
percentages = counts / len(labels)
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
return np.concatenate([dominant_colors, color_percentages])
|
117 |
-
except:
|
118 |
-
return np.zeros(2 * k)
|
119 |
|
120 |
def color_coherence_vector(image, k=3):
|
121 |
-
|
122 |
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
123 |
-
|
124 |
-
# Convert the grayscale image to 8-bit format before applying threshold
|
125 |
gray = np.uint8(gray)
|
126 |
|
127 |
-
# Apply Otsu's thresholding method
|
128 |
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
129 |
-
|
130 |
-
# Perform connected components analysis
|
131 |
num_labels, labels = cv2.connectedComponents(binary)
|
132 |
|
133 |
ccv = []
|
134 |
for i in range(1, min(k+1, num_labels)):
|
135 |
region_mask = (labels == i)
|
136 |
total_pixels = np.sum(region_mask)
|
137 |
-
|
138 |
-
|
139 |
-
ccv.extend([coherent_pixels, total_pixels])
|
140 |
-
|
141 |
-
while len(ccv) < 2 * k:
|
142 |
-
ccv.append(0)
|
143 |
-
|
144 |
-
return np.array(ccv)
|
145 |
-
|
146 |
-
|
147 |
-
# ViT and Feature Extraction Functions (from previous implementation)
|
148 |
-
# (Keeping the Patches, PatchEncoder, and create_vit_feature_extractor functions)
|
149 |
-
|
150 |
-
def extract_features(image):
|
151 |
-
"""
|
152 |
-
Extract multiple features from an image
|
153 |
-
"""
|
154 |
-
color_hist = color_histogram(image)
|
155 |
-
color_mom = color_moments(image)
|
156 |
-
dom_color = dominant_color_descriptor(image)
|
157 |
-
ccv = color_coherence_vector(image)
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
import torch
|
163 |
-
from tensorflow.keras import layers, models
|
164 |
|
165 |
-
|
166 |
-
|
|
|
|
|
167 |
inputs = layers.Input(shape=input_shape)
|
|
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
# Tạo mô hình ViT hoặc sử dụng mô hình khác đã được huấn luyện sẵn
|
175 |
-
vit_model = EfficientNetB0(include_top=False, weights='imagenet', input_tensor=x)
|
176 |
-
|
177 |
-
# Trích xuất đặc trưng từ mô hình ViT
|
178 |
-
x = layers.GlobalAveragePooling2D()(vit_model.output)
|
179 |
-
|
180 |
-
if num_classes:
|
181 |
-
x = layers.Dense(num_classes, activation='softmax')(x) # Thêm lớp phân loại (nếu có)
|
182 |
|
|
|
183 |
return models.Model(inputs=inputs, outputs=x)
|
|
|
|
|
|
|
|
|
|
|
184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
def preprocess_image(image):
|
186 |
"""Preprocess the uploaded image"""
|
187 |
# Convert to RGB if needed
|
188 |
if image.mode != 'RGB':
|
189 |
image = image.convert('RGB')
|
190 |
|
191 |
-
# Convert to numpy array
|
192 |
img_array = np.array(image)
|
193 |
-
|
194 |
-
# Ensure RGB format
|
195 |
-
if len(img_array.shape) == 2: # Grayscale
|
196 |
-
img_array = cv2.cvtColor(img_array, cv2.COLOR_GRAY2RGB)
|
197 |
-
elif img_array.shape[2] == 4: # RGBA
|
198 |
-
img_array = cv2.cvtColor(img_array, cv2.COLOR_RGBA2RGB)
|
199 |
-
|
200 |
-
# Resize
|
201 |
img_array = cv2.resize(img_array, (256, 256))
|
202 |
-
|
203 |
-
# Normalize
|
204 |
img_array = img_array.astype('float32') / 255.0
|
205 |
|
206 |
# Extract traditional features
|
207 |
-
|
208 |
|
209 |
-
#
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
# Flatten ViT features if needed
|
217 |
-
image_vit = image_vit.reshape(1, -1) # Ensure 2D shape
|
218 |
|
219 |
# Combine features
|
220 |
-
|
|
|
|
|
|
|
221 |
|
222 |
# Scale features
|
223 |
scaler = StandardScaler()
|
224 |
-
|
225 |
-
|
226 |
-
return image_scaled.squeeze() # Remove any unnecessary dimensions
|
227 |
|
228 |
def get_top_predictions(prediction, class_names, top_k=5):
|
229 |
"""Get top k predictions with their probabilities"""
|
230 |
-
# Get indices of top k predictions
|
231 |
top_indices = prediction.argsort()[0][-top_k:][::-1]
|
232 |
-
|
233 |
-
# Get corresponding class names and probabilities
|
234 |
-
top_predictions = [
|
235 |
(class_names[i], float(prediction[0][i]) * 100)
|
236 |
for i in top_indices
|
237 |
]
|
238 |
-
|
239 |
-
return top_predictions
|
240 |
|
241 |
def main():
|
242 |
-
# Title
|
243 |
st.title("🪨 Stone Classification")
|
244 |
st.write("Upload an image of a stone to classify its type")
|
245 |
|
246 |
-
# Initialize session state
|
247 |
if 'predictions' not in st.session_state:
|
248 |
st.session_state.predictions = None
|
249 |
|
250 |
-
# Create two columns
|
251 |
col1, col2 = st.columns(2)
|
252 |
|
253 |
with col1:
|
@@ -255,69 +199,60 @@ def main():
|
|
255 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
256 |
|
257 |
if uploaded_file is not None:
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
try:
|
264 |
-
# Load model
|
265 |
model = load_model()
|
|
|
|
|
|
|
266 |
|
267 |
-
# Preprocess image
|
268 |
processed_image = preprocess_image(image)
|
|
|
269 |
|
270 |
-
# Ensure correct shape for prediction
|
271 |
-
processed_image = np.expand_dims(processed_image, axis=0)
|
272 |
-
|
273 |
-
# Make prediction
|
274 |
-
prediction = model.predict(processed_image)
|
275 |
class_names = ['10', '6.5', '7', '7.5', '8', '8.5', '9', '9.2', '9.5', '9.7']
|
|
|
276 |
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
# Store in session state
|
281 |
-
st.session_state.predictions = top_predictions
|
282 |
-
|
283 |
-
except Exception as e:
|
284 |
-
st.error(f"Error during prediction: {str(e)}")
|
285 |
|
286 |
with col2:
|
287 |
st.subheader("Prediction Results")
|
288 |
-
if st.session_state.predictions
|
289 |
-
#
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
|
|
317 |
else:
|
318 |
-
st.info("Upload an image
|
319 |
|
320 |
-
# Footer
|
321 |
st.markdown("---")
|
322 |
st.markdown("Made with ❤️ using Streamlit")
|
323 |
|
|
|
3 |
import numpy as np
|
4 |
import cv2
|
5 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
from tensorflow.keras import layers, models
|
7 |
from tensorflow.keras.applications import EfficientNetB0
|
8 |
from tensorflow.keras.applications.efficientnet import preprocess_input
|
9 |
+
from sklearn.preprocessing import StandardScaler
|
10 |
+
import io
|
11 |
+
|
12 |
# Set page config
|
13 |
st.set_page_config(
|
14 |
page_title="Stone Classification",
|
|
|
16 |
layout="wide"
|
17 |
)
|
18 |
|
19 |
+
# Custom CSS with improved styling
|
20 |
st.markdown("""
|
21 |
<style>
|
22 |
.main {
|
|
|
26 |
width: 100%;
|
27 |
margin-top: 1rem;
|
28 |
}
|
|
|
|
|
|
|
|
|
29 |
.prediction-card {
|
30 |
padding: 2rem;
|
31 |
border-radius: 0.5rem;
|
|
|
39 |
border-radius: 0.5rem;
|
40 |
box-shadow: 0 1px 3px rgba(0,0,0,0.12);
|
41 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
</style>
|
43 |
""", unsafe_allow_html=True)
|
44 |
|
45 |
@st.cache_resource
|
46 |
def load_model():
|
47 |
"""Load the trained model"""
|
48 |
+
try:
|
49 |
+
return tf.keras.models.load_model('mlp_model.h5')
|
50 |
+
except Exception as e:
|
51 |
+
st.error(f"Error loading model: {str(e)}")
|
52 |
+
return None
|
53 |
+
|
54 |
def color_histogram(image, bins=16):
|
55 |
+
"""Calculate color histogram features"""
|
56 |
hist_r = cv2.calcHist([image], [0], None, [bins], [0, 256]).flatten()
|
57 |
hist_g = cv2.calcHist([image], [1], None, [bins], [0, 256]).flatten()
|
58 |
hist_b = cv2.calcHist([image], [2], None, [bins], [0, 256]).flatten()
|
59 |
|
60 |
+
# Normalize histograms
|
61 |
+
hist_r = hist_r / (np.sum(hist_r) + 1e-7)
|
62 |
+
hist_g = hist_g / (np.sum(hist_g) + 1e-7)
|
63 |
+
hist_b = hist_b / (np.sum(hist_b) + 1e-7)
|
64 |
|
65 |
return np.concatenate([hist_r, hist_g, hist_b])
|
66 |
|
67 |
def color_moments(image):
|
68 |
+
"""Calculate color moments features"""
|
69 |
img = image.astype(np.float32) / 255.0
|
|
|
70 |
moments = []
|
71 |
+
|
72 |
+
for i in range(3):
|
73 |
channel = img[:,:,i]
|
|
|
74 |
mean = np.mean(channel)
|
75 |
+
std = np.std(channel) + 1e-7 # Avoid division by zero
|
76 |
+
skewness = np.mean(((channel - mean) / std) ** 3) if std != 0 else 0
|
|
|
77 |
moments.extend([mean, std, skewness])
|
78 |
|
79 |
return np.array(moments)
|
80 |
|
81 |
def dominant_color_descriptor(image, k=3):
|
82 |
+
"""Calculate dominant color descriptor"""
|
83 |
+
pixels = image.reshape(-1, 3).astype(np.float32)
|
84 |
|
85 |
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2)
|
86 |
flags = cv2.KMEANS_RANDOM_CENTERS
|
87 |
|
88 |
try:
|
89 |
+
_, labels, centers = cv2.kmeans(pixels, k, None, criteria, 10, flags)
|
|
|
90 |
unique, counts = np.unique(labels, return_counts=True)
|
91 |
percentages = counts / len(labels)
|
92 |
+
return np.concatenate([centers.flatten(), percentages])
|
93 |
+
except Exception:
|
94 |
+
return np.zeros(k * 4) # Return zero vector if clustering fails
|
|
|
|
|
|
|
|
|
95 |
|
96 |
def color_coherence_vector(image, k=3):
|
97 |
+
"""Calculate color coherence vector"""
|
98 |
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
|
|
|
|
99 |
gray = np.uint8(gray)
|
100 |
|
|
|
101 |
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
|
|
|
|
102 |
num_labels, labels = cv2.connectedComponents(binary)
|
103 |
|
104 |
ccv = []
|
105 |
for i in range(1, min(k+1, num_labels)):
|
106 |
region_mask = (labels == i)
|
107 |
total_pixels = np.sum(region_mask)
|
108 |
+
ccv.extend([total_pixels, total_pixels])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
# Pad with zeros if needed
|
111 |
+
ccv.extend([0] * (2 * k - len(ccv)))
|
112 |
+
return np.array(ccv[:2*k])
|
|
|
|
|
113 |
|
114 |
+
@st.cache_resource
|
115 |
+
def create_feature_extractor():
|
116 |
+
"""Create and cache the feature extractor model"""
|
117 |
+
input_shape = (256, 256, 3)
|
118 |
inputs = layers.Input(shape=input_shape)
|
119 |
+
x = layers.Lambda(preprocess_input)(inputs)
|
120 |
|
121 |
+
base_model = EfficientNetB0(
|
122 |
+
include_top=False,
|
123 |
+
weights='imagenet',
|
124 |
+
input_tensor=x
|
125 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
x = layers.GlobalAveragePooling2D()(base_model.output)
|
128 |
return models.Model(inputs=inputs, outputs=x)
|
129 |
+
|
130 |
+
def extract_features(image):
|
131 |
+
"""Extract all features from an image"""
|
132 |
+
# Convert image to uint8 for OpenCV operations
|
133 |
+
image_uint8 = (image * 255).astype(np.uint8)
|
134 |
|
135 |
+
# Extract traditional features
|
136 |
+
hist_features = color_histogram(image_uint8)
|
137 |
+
moment_features = color_moments(image_uint8)
|
138 |
+
dominant_features = dominant_color_descriptor(image_uint8)
|
139 |
+
ccv_features = color_coherence_vector(image_uint8)
|
140 |
+
|
141 |
+
return np.concatenate([
|
142 |
+
hist_features,
|
143 |
+
moment_features,
|
144 |
+
dominant_features,
|
145 |
+
ccv_features
|
146 |
+
])
|
147 |
+
|
148 |
def preprocess_image(image):
|
149 |
"""Preprocess the uploaded image"""
|
150 |
# Convert to RGB if needed
|
151 |
if image.mode != 'RGB':
|
152 |
image = image.convert('RGB')
|
153 |
|
154 |
+
# Convert to numpy array and resize
|
155 |
img_array = np.array(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
img_array = cv2.resize(img_array, (256, 256))
|
|
|
|
|
157 |
img_array = img_array.astype('float32') / 255.0
|
158 |
|
159 |
# Extract traditional features
|
160 |
+
traditional_features = extract_features(img_array)
|
161 |
|
162 |
+
# Extract deep features
|
163 |
+
feature_extractor = create_feature_extractor()
|
164 |
+
deep_features = feature_extractor.predict(
|
165 |
+
np.expand_dims(img_array, axis=0),
|
166 |
+
verbose=0
|
167 |
+
)
|
|
|
|
|
|
|
168 |
|
169 |
# Combine features
|
170 |
+
combined_features = np.concatenate([
|
171 |
+
traditional_features.reshape(1, -1),
|
172 |
+
deep_features.reshape(1, -1)
|
173 |
+
], axis=1)
|
174 |
|
175 |
# Scale features
|
176 |
scaler = StandardScaler()
|
177 |
+
return scaler.fit_transform(combined_features)
|
|
|
|
|
178 |
|
179 |
def get_top_predictions(prediction, class_names, top_k=5):
|
180 |
"""Get top k predictions with their probabilities"""
|
|
|
181 |
top_indices = prediction.argsort()[0][-top_k:][::-1]
|
182 |
+
return [
|
|
|
|
|
183 |
(class_names[i], float(prediction[0][i]) * 100)
|
184 |
for i in top_indices
|
185 |
]
|
|
|
|
|
186 |
|
187 |
def main():
|
|
|
188 |
st.title("🪨 Stone Classification")
|
189 |
st.write("Upload an image of a stone to classify its type")
|
190 |
|
191 |
+
# Initialize session state
|
192 |
if 'predictions' not in st.session_state:
|
193 |
st.session_state.predictions = None
|
194 |
|
|
|
195 |
col1, col2 = st.columns(2)
|
196 |
|
197 |
with col1:
|
|
|
199 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
200 |
|
201 |
if uploaded_file is not None:
|
202 |
+
try:
|
203 |
+
image = Image.open(uploaded_file)
|
204 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
205 |
+
|
206 |
+
with st.spinner('Analyzing image...'):
|
|
|
|
|
207 |
model = load_model()
|
208 |
+
if model is None:
|
209 |
+
st.error("Failed to load model")
|
210 |
+
return
|
211 |
|
|
|
212 |
processed_image = preprocess_image(image)
|
213 |
+
prediction = model.predict(processed_image, verbose=0)
|
214 |
|
|
|
|
|
|
|
|
|
|
|
215 |
class_names = ['10', '6.5', '7', '7.5', '8', '8.5', '9', '9.2', '9.5', '9.7']
|
216 |
+
st.session_state.predictions = get_top_predictions(prediction, class_names)
|
217 |
|
218 |
+
except Exception as e:
|
219 |
+
st.error(f"Error processing image: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
with col2:
|
222 |
st.subheader("Prediction Results")
|
223 |
+
if st.session_state.predictions:
|
224 |
+
# Display main prediction
|
225 |
+
top_class, top_confidence = st.session_state.predictions[0]
|
226 |
+
st.markdown(
|
227 |
+
f"""
|
228 |
+
<div class='prediction-card'>
|
229 |
+
<h3>Primary Prediction: Grade {top_class}</h3>
|
230 |
+
<h3>Confidence: {top_confidence:.2f}%</h3>
|
231 |
+
</div>
|
232 |
+
""",
|
233 |
+
unsafe_allow_html=True
|
234 |
+
)
|
235 |
+
|
236 |
+
# Display confidence bar
|
237 |
+
st.progress(top_confidence / 100)
|
238 |
+
|
239 |
+
# Display top 5 predictions
|
240 |
+
st.markdown("### Top 5 Predictions")
|
241 |
+
st.markdown("<div class='top-predictions'>", unsafe_allow_html=True)
|
242 |
+
|
243 |
+
for class_name, confidence in st.session_state.predictions:
|
244 |
+
cols = st.columns([2, 6, 2])
|
245 |
+
with cols[0]:
|
246 |
+
st.write(f"Grade {class_name}")
|
247 |
+
with cols[1]:
|
248 |
+
st.progress(confidence / 100)
|
249 |
+
with cols[2]:
|
250 |
+
st.write(f"{confidence:.2f}%")
|
251 |
+
|
252 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
253 |
else:
|
254 |
+
st.info("Upload an image to see the predictions")
|
255 |
|
|
|
256 |
st.markdown("---")
|
257 |
st.markdown("Made with ❤️ using Streamlit")
|
258 |
|