Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
@@ -5,7 +6,19 @@ import cv2
|
|
5 |
from PIL import Image
|
6 |
import io
|
7 |
import torch
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
# Set page config
|
10 |
st.set_page_config(
|
11 |
page_title="Stone Detection & Classification",
|
@@ -13,6 +26,10 @@ st.set_page_config(
|
|
13 |
layout="wide"
|
14 |
)
|
15 |
|
|
|
|
|
|
|
|
|
16 |
# Custom CSS to improve the appearance
|
17 |
st.markdown("""
|
18 |
<style>
|
@@ -29,20 +46,55 @@ st.markdown("""
|
|
29 |
}
|
30 |
</style>
|
31 |
""", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
def resize_to_square(image):
|
34 |
"""Resize image to square while maintaining aspect ratio"""
|
35 |
size = max(image.shape[0], image.shape[1])
|
36 |
new_img = np.zeros((size, size, 3), dtype=np.uint8)
|
37 |
-
|
38 |
# Calculate position to paste original image
|
39 |
x_center = (size - image.shape[1]) // 2
|
40 |
y_center = (size - image.shape[0]) // 2
|
41 |
-
|
42 |
# Copy the image into center of result image
|
43 |
-
new_img[y_center:y_center+image.shape[0],
|
44 |
x_center:x_center+image.shape[1]] = image
|
45 |
-
|
46 |
return new_img
|
47 |
|
48 |
@st.cache_resource
|
@@ -53,17 +105,17 @@ def load_models():
|
|
53 |
object_detection_model = torch.load("fasterrcnn_resnet50_fpn_090824.pth", map_location=device)
|
54 |
object_detection_model.to(device)
|
55 |
object_detection_model.eval()
|
56 |
-
|
57 |
# Load classification model
|
58 |
classification_model = tf.keras.models.load_model('custom_model.h5')
|
59 |
-
|
60 |
return object_detection_model, classification_model, device
|
61 |
|
62 |
def perform_object_detection(image, model, device):
|
63 |
original_size = image.size
|
64 |
target_size = (256, 256)
|
65 |
frame_resized = cv2.resize(np.array(image), dsize=target_size, interpolation=cv2.INTER_AREA)
|
66 |
-
frame_rgb = cv2.cvtColor(frame_resized, cv2.COLOR_RGB2BGR).astype(np.float32)
|
67 |
frame_rgb /= 255.0
|
68 |
frame_rgb = frame_rgb.transpose(2, 0, 1)
|
69 |
frame_rgb = torch.from_numpy(frame_rgb).float().unsqueeze(0).to(device)
|
@@ -91,16 +143,22 @@ def perform_object_detection(image, model, device):
|
|
91 |
scale_h, scale_w = original_h / target_size[0], original_w / target_size[1]
|
92 |
x1_orig, y1_orig = int(x1 * scale_w), int(y1 * scale_h)
|
93 |
x2_orig, y2_orig = int(x2 * scale_w), int(y2 * scale_h)
|
94 |
-
|
95 |
# Crop and process detected region
|
96 |
cropped_image = np.array(image)[y1_orig:y2_orig, x1_orig:x2_orig]
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
resized_crop = resize_to_square(cropped_image)
|
98 |
cropped_images.append(resized_crop)
|
99 |
detected_boxes.append((x1, y1, x2, y2))
|
100 |
|
101 |
# Draw bounding box
|
102 |
cv2.rectangle(result_image, (x1, y1), (x2, y2), color, 3)
|
103 |
-
cv2.putText(result_image, label_text, (x1, y1 - 10),
|
104 |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
105 |
|
106 |
return Image.fromarray(result_image), cropped_images, detected_boxes
|
@@ -124,16 +182,16 @@ def get_top_predictions(prediction, class_names, top_k=5):
|
|
124 |
def main():
|
125 |
st.title("🪨 Stone Detection & Classification")
|
126 |
st.write("Upload an image to detect and classify stone surfaces")
|
127 |
-
|
128 |
if 'predictions' not in st.session_state:
|
129 |
st.session_state.predictions = None
|
130 |
-
|
131 |
col1, col2 = st.columns(2)
|
132 |
-
|
133 |
with col1:
|
134 |
st.subheader("Upload Image")
|
135 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
136 |
-
|
137 |
if uploaded_file is not None:
|
138 |
image = Image.open(uploaded_file)
|
139 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
@@ -142,24 +200,24 @@ def main():
|
|
142 |
try:
|
143 |
# Load both models
|
144 |
object_detection_model, classification_model, device = load_models()
|
145 |
-
|
146 |
# Perform object detection
|
147 |
result_image, cropped_images, detected_boxes = perform_object_detection(
|
148 |
image, object_detection_model, device
|
149 |
)
|
150 |
-
|
151 |
if not cropped_images:
|
152 |
st.warning("No stone surfaces detected in the image")
|
153 |
return
|
154 |
-
|
155 |
# Display detection results
|
156 |
st.subheader("Detection Results")
|
157 |
st.image(result_image, caption="Detected Stone Surfaces", use_column_width=True)
|
158 |
-
|
159 |
# Process each detected region
|
160 |
class_names = ['10', '6.5', '7', '7.5', '8', '8.5', '9', '9.2', '9.5', '9.7']
|
161 |
all_predictions = []
|
162 |
-
|
163 |
for idx, cropped_image in enumerate(cropped_images):
|
164 |
processed_image = preprocess_image(cropped_image)
|
165 |
prediction = classification_model.predict(
|
@@ -167,25 +225,25 @@ def main():
|
|
167 |
)
|
168 |
top_predictions = get_top_predictions(prediction, class_names)
|
169 |
all_predictions.append(top_predictions)
|
170 |
-
|
171 |
# Store in session state
|
172 |
st.session_state.predictions = all_predictions
|
173 |
-
|
174 |
except Exception as e:
|
175 |
st.error(f"Error during processing: {str(e)}")
|
176 |
-
|
177 |
with col2:
|
178 |
st.subheader("Classification Results")
|
179 |
if st.session_state.predictions is not None:
|
180 |
for idx, predictions in enumerate(st.session_state.predictions):
|
181 |
st.markdown(f"### Region {idx + 1}")
|
182 |
-
|
183 |
# Display main prediction
|
184 |
top_class, top_confidence = predictions[0]
|
185 |
st.markdown(f"**Primary Prediction: Grade {top_class}**")
|
186 |
st.markdown(f"**Confidence: {top_confidence:.2f}%**")
|
187 |
st.progress(top_confidence / 100)
|
188 |
-
|
189 |
# Display all predictions for this region
|
190 |
st.markdown("**Top 5 Predictions**")
|
191 |
for class_name, confidence in predictions:
|
@@ -196,8 +254,50 @@ def main():
|
|
196 |
st.progress(confidence / 100)
|
197 |
with col_value:
|
198 |
st.write(f"{confidence:.2f}%")
|
199 |
-
|
200 |
st.markdown("---")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
else:
|
202 |
st.info("Upload an image to see detection and classification results")
|
203 |
|
|
|
1 |
+
%%writefile app.py
|
2 |
import streamlit as st
|
3 |
import tensorflow as tf
|
4 |
import numpy as np
|
|
|
6 |
from PIL import Image
|
7 |
import io
|
8 |
import torch
|
9 |
+
import cloudinary
|
10 |
+
import cloudinary.uploader
|
11 |
+
from cloudinary.utils import cloudinary_url
|
12 |
+
import os
|
13 |
+
import random
|
14 |
+
import string
|
15 |
+
# Cloudinary Configuration
|
16 |
+
cloudinary.config(
|
17 |
+
cloud_name = os.getenv("CLOUD"),
|
18 |
+
api_key = os.getenv("API"),
|
19 |
+
api_secret = os.getenv("SECRET"),
|
20 |
+
secure=True
|
21 |
+
)
|
22 |
# Set page config
|
23 |
st.set_page_config(
|
24 |
page_title="Stone Detection & Classification",
|
|
|
26 |
layout="wide"
|
27 |
)
|
28 |
|
29 |
+
def generate_random_filename(extension="png"):
|
30 |
+
random_string = ''.join(random.choices(string.ascii_letters + string.digits, k=8))
|
31 |
+
return f"temp_image_{random_string}.{extension}"
|
32 |
+
|
33 |
# Custom CSS to improve the appearance
|
34 |
st.markdown("""
|
35 |
<style>
|
|
|
46 |
}
|
47 |
</style>
|
48 |
""", unsafe_allow_html=True)
|
49 |
+
def upload_to_cloudinary(file_path, label):
|
50 |
+
"""
|
51 |
+
Upload file to Cloudinary with specified label as folder
|
52 |
+
"""
|
53 |
+
try:
|
54 |
+
# Upload to Cloudinary
|
55 |
+
upload_result = cloudinary.uploader.upload(
|
56 |
+
file_path,
|
57 |
+
folder=label,
|
58 |
+
public_id=f"{label}_{os.path.basename(file_path)}"
|
59 |
+
)
|
60 |
+
|
61 |
+
# Generate optimized URLs
|
62 |
+
optimize_url, _ = cloudinary_url(
|
63 |
+
upload_result['public_id'],
|
64 |
+
fetch_format="auto",
|
65 |
+
quality="auto"
|
66 |
+
)
|
67 |
+
|
68 |
+
auto_crop_url, _ = cloudinary_url(
|
69 |
+
upload_result['public_id'],
|
70 |
+
width=500,
|
71 |
+
height=500,
|
72 |
+
crop="auto",
|
73 |
+
gravity="auto"
|
74 |
+
)
|
75 |
+
|
76 |
+
return {
|
77 |
+
"upload_result": upload_result,
|
78 |
+
"optimize_url": optimize_url,
|
79 |
+
"auto_crop_url": auto_crop_url
|
80 |
+
}
|
81 |
+
|
82 |
+
except Exception as e:
|
83 |
+
return f"Error uploading to Cloudinary: {str(e)}"
|
84 |
|
85 |
def resize_to_square(image):
|
86 |
"""Resize image to square while maintaining aspect ratio"""
|
87 |
size = max(image.shape[0], image.shape[1])
|
88 |
new_img = np.zeros((size, size, 3), dtype=np.uint8)
|
89 |
+
|
90 |
# Calculate position to paste original image
|
91 |
x_center = (size - image.shape[1]) // 2
|
92 |
y_center = (size - image.shape[0]) // 2
|
93 |
+
|
94 |
# Copy the image into center of result image
|
95 |
+
new_img[y_center:y_center+image.shape[0],
|
96 |
x_center:x_center+image.shape[1]] = image
|
97 |
+
|
98 |
return new_img
|
99 |
|
100 |
@st.cache_resource
|
|
|
105 |
object_detection_model = torch.load("fasterrcnn_resnet50_fpn_090824.pth", map_location=device)
|
106 |
object_detection_model.to(device)
|
107 |
object_detection_model.eval()
|
108 |
+
|
109 |
# Load classification model
|
110 |
classification_model = tf.keras.models.load_model('custom_model.h5')
|
111 |
+
|
112 |
return object_detection_model, classification_model, device
|
113 |
|
114 |
def perform_object_detection(image, model, device):
|
115 |
original_size = image.size
|
116 |
target_size = (256, 256)
|
117 |
frame_resized = cv2.resize(np.array(image), dsize=target_size, interpolation=cv2.INTER_AREA)
|
118 |
+
frame_rgb = cv2.cvtColor(frame_resized, cv2.COLOR_RGB2BGR).astype(np.float32)
|
119 |
frame_rgb /= 255.0
|
120 |
frame_rgb = frame_rgb.transpose(2, 0, 1)
|
121 |
frame_rgb = torch.from_numpy(frame_rgb).float().unsqueeze(0).to(device)
|
|
|
143 |
scale_h, scale_w = original_h / target_size[0], original_w / target_size[1]
|
144 |
x1_orig, y1_orig = int(x1 * scale_w), int(y1 * scale_h)
|
145 |
x2_orig, y2_orig = int(x2 * scale_w), int(y2 * scale_h)
|
146 |
+
|
147 |
# Crop and process detected region
|
148 |
cropped_image = np.array(image)[y1_orig:y2_orig, x1_orig:x2_orig]
|
149 |
+
|
150 |
+
# Check if image has 4 channels (RGBA), convert to RGB
|
151 |
+
if cropped_image.shape[-1] == 4:
|
152 |
+
cropped_image = cv2.cvtColor(cropped_image, cv2.COLOR_RGBA2RGB)
|
153 |
+
|
154 |
+
# Resize cropped image
|
155 |
resized_crop = resize_to_square(cropped_image)
|
156 |
cropped_images.append(resized_crop)
|
157 |
detected_boxes.append((x1, y1, x2, y2))
|
158 |
|
159 |
# Draw bounding box
|
160 |
cv2.rectangle(result_image, (x1, y1), (x2, y2), color, 3)
|
161 |
+
cv2.putText(result_image, label_text, (x1, y1 - 10),
|
162 |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
163 |
|
164 |
return Image.fromarray(result_image), cropped_images, detected_boxes
|
|
|
182 |
def main():
|
183 |
st.title("🪨 Stone Detection & Classification")
|
184 |
st.write("Upload an image to detect and classify stone surfaces")
|
185 |
+
|
186 |
if 'predictions' not in st.session_state:
|
187 |
st.session_state.predictions = None
|
188 |
+
|
189 |
col1, col2 = st.columns(2)
|
190 |
+
|
191 |
with col1:
|
192 |
st.subheader("Upload Image")
|
193 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
194 |
+
|
195 |
if uploaded_file is not None:
|
196 |
image = Image.open(uploaded_file)
|
197 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
|
|
200 |
try:
|
201 |
# Load both models
|
202 |
object_detection_model, classification_model, device = load_models()
|
203 |
+
|
204 |
# Perform object detection
|
205 |
result_image, cropped_images, detected_boxes = perform_object_detection(
|
206 |
image, object_detection_model, device
|
207 |
)
|
208 |
+
|
209 |
if not cropped_images:
|
210 |
st.warning("No stone surfaces detected in the image")
|
211 |
return
|
212 |
+
|
213 |
# Display detection results
|
214 |
st.subheader("Detection Results")
|
215 |
st.image(result_image, caption="Detected Stone Surfaces", use_column_width=True)
|
216 |
+
|
217 |
# Process each detected region
|
218 |
class_names = ['10', '6.5', '7', '7.5', '8', '8.5', '9', '9.2', '9.5', '9.7']
|
219 |
all_predictions = []
|
220 |
+
|
221 |
for idx, cropped_image in enumerate(cropped_images):
|
222 |
processed_image = preprocess_image(cropped_image)
|
223 |
prediction = classification_model.predict(
|
|
|
225 |
)
|
226 |
top_predictions = get_top_predictions(prediction, class_names)
|
227 |
all_predictions.append(top_predictions)
|
228 |
+
|
229 |
# Store in session state
|
230 |
st.session_state.predictions = all_predictions
|
231 |
+
|
232 |
except Exception as e:
|
233 |
st.error(f"Error during processing: {str(e)}")
|
234 |
+
|
235 |
with col2:
|
236 |
st.subheader("Classification Results")
|
237 |
if st.session_state.predictions is not None:
|
238 |
for idx, predictions in enumerate(st.session_state.predictions):
|
239 |
st.markdown(f"### Region {idx + 1}")
|
240 |
+
|
241 |
# Display main prediction
|
242 |
top_class, top_confidence = predictions[0]
|
243 |
st.markdown(f"**Primary Prediction: Grade {top_class}**")
|
244 |
st.markdown(f"**Confidence: {top_confidence:.2f}%**")
|
245 |
st.progress(top_confidence / 100)
|
246 |
+
|
247 |
# Display all predictions for this region
|
248 |
st.markdown("**Top 5 Predictions**")
|
249 |
for class_name, confidence in predictions:
|
|
|
254 |
st.progress(confidence / 100)
|
255 |
with col_value:
|
256 |
st.write(f"{confidence:.2f}%")
|
257 |
+
|
258 |
st.markdown("---")
|
259 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
260 |
+
|
261 |
+
# User Confirmation Section
|
262 |
+
st.markdown("### Xác nhận độ chính xác của mô hình")
|
263 |
+
st.write("Giúp chúng tôi cải thiện mô hình bằng cách xác nhận độ chính xác của dự đoán.")
|
264 |
+
|
265 |
+
# Accuracy Radio Button
|
266 |
+
accuracy_option = st.radio(
|
267 |
+
"Dự đoán có chính xác không?",
|
268 |
+
["Chọn", "Chính xác", "Không chính xác"],
|
269 |
+
index=0,
|
270 |
+
key=f"accuracy_radio_{idx}"
|
271 |
+
)
|
272 |
+
if accuracy_option == "Không chính xác":
|
273 |
+
# Input for correct grade
|
274 |
+
correct_grade = st.selectbox(
|
275 |
+
"Chọn màu đá đúng:",
|
276 |
+
['10', '6.5', '7', '7.5', '8', '8.5', '9', '9.2', '9.5', '9.7'],
|
277 |
+
index=None,
|
278 |
+
placeholder="Chọn màu đúng",
|
279 |
+
key=f"selectbox_correct_grade_{idx}"
|
280 |
+
)
|
281 |
+
|
282 |
+
# Chỉ thực hiện khi người dùng đã chọn giá trị trong selectbox
|
283 |
+
if correct_grade:
|
284 |
+
st.info(f"Đã chọn màu đúng: {correct_grade}")
|
285 |
+
|
286 |
+
# Resize hình ảnh xuống 256x256
|
287 |
+
resized_image = Image.fromarray(cropped_image).resize((256, 256))
|
288 |
+
temp_image_path = generate_random_filename()
|
289 |
+
|
290 |
+
# Lưu tệp resize tạm thời
|
291 |
+
resized_image.save(temp_image_path)
|
292 |
+
|
293 |
+
# Tải ảnh lên Cloudinary
|
294 |
+
cloudinary_result = upload_to_cloudinary(temp_image_path, correct_grade)
|
295 |
+
|
296 |
+
if isinstance(cloudinary_result, dict):
|
297 |
+
st.success(f"Hình ảnh đã được tải lên thành công cho màu {correct_grade}")
|
298 |
+
st.write(f"URL công khai: {cloudinary_result['upload_result']['secure_url']}")
|
299 |
+
else:
|
300 |
+
st.error(cloudinary_result)
|
301 |
else:
|
302 |
st.info("Upload an image to see detection and classification results")
|
303 |
|