Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,12 +3,7 @@ import tensorflow as tf
|
|
3 |
import numpy as np
|
4 |
import cv2
|
5 |
from PIL import Image
|
6 |
-
from tensorflow.keras import layers, models
|
7 |
-
from tensorflow.keras.applications import EfficientNetB0
|
8 |
-
from tensorflow.keras.applications.efficientnet import preprocess_input
|
9 |
-
import joblib
|
10 |
import io
|
11 |
-
import os
|
12 |
|
13 |
# Set page config
|
14 |
st.set_page_config(
|
@@ -17,7 +12,7 @@ st.set_page_config(
|
|
17 |
layout="wide"
|
18 |
)
|
19 |
|
20 |
-
# Custom CSS
|
21 |
st.markdown("""
|
22 |
<style>
|
23 |
.main {
|
@@ -27,10 +22,14 @@ st.markdown("""
|
|
27 |
width: 100%;
|
28 |
margin-top: 1rem;
|
29 |
}
|
|
|
|
|
|
|
|
|
30 |
.prediction-card {
|
31 |
padding: 2rem;
|
32 |
border-radius: 0.5rem;
|
33 |
-
background-color: #
|
34 |
margin: 1rem 0;
|
35 |
}
|
36 |
.top-predictions {
|
@@ -40,154 +39,150 @@ st.markdown("""
|
|
40 |
border-radius: 0.5rem;
|
41 |
box-shadow: 0 1px 3px rgba(0,0,0,0.12);
|
42 |
}
|
43 |
-
.
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
48 |
}
|
49 |
</style>
|
50 |
""", unsafe_allow_html=True)
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
#
|
60 |
-
#
|
61 |
-
#
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
#
|
68 |
-
#
|
69 |
-
#
|
70 |
-
|
71 |
-
|
72 |
-
#
|
73 |
-
#
|
74 |
-
|
75 |
-
#
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
def main():
|
|
|
80 |
st.title("🪨 Stone Classification")
|
81 |
st.write("Upload an image of a stone to classify its type")
|
82 |
-
|
83 |
-
#
|
84 |
-
model, scaler = load_model_and_scaler()
|
85 |
-
if model is None or scaler is None:
|
86 |
-
st.error("Failed to load model or scaler. Please ensure both files exist.")
|
87 |
-
return
|
88 |
-
|
89 |
-
# Initialize session state
|
90 |
if 'predictions' not in st.session_state:
|
91 |
st.session_state.predictions = None
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
col1, col2 = st.columns(2)
|
96 |
-
|
97 |
with col1:
|
98 |
st.subheader("Upload Image")
|
99 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
100 |
-
|
101 |
if uploaded_file is not None:
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
111 |
class_names = ['10', '6.5', '7', '7.5', '8', '8.5', '9', '9.2', '9.5', '9.7']
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
117 |
with col2:
|
118 |
st.subheader("Prediction Results")
|
119 |
-
if st.session_state.predictions:
|
120 |
-
#
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
<div class='prediction-card'>
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
""
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
st.markdown("</div>", unsafe_allow_html=True)
|
149 |
-
|
150 |
-
# User Survey
|
151 |
-
st.markdown("<div class='survey-card'>", unsafe_allow_html=True)
|
152 |
-
st.markdown("### Model Accuracy Survey")
|
153 |
-
st.write("Mô hình có dự đoán chính xác màu sắc của đá trong ảnh này không?")
|
154 |
-
|
155 |
-
# Accuracy Confirmation
|
156 |
-
accuracy = st.radio(
|
157 |
-
"Đánh giá độ chính xác",
|
158 |
-
["Chọn", "Chính xác", "Không chính xác"],
|
159 |
-
index=0
|
160 |
-
)
|
161 |
-
|
162 |
-
if accuracy == "Không chính xác":
|
163 |
-
# Color input for incorrect prediction
|
164 |
-
correct_color = st.text_input(
|
165 |
-
"Vui lòng nhập màu sắc chính xác của đá:",
|
166 |
-
help="Ví dụ: 10, 9.7, 9.5, 9.2, v.v."
|
167 |
-
)
|
168 |
-
|
169 |
-
# if st.button("Gửi phản hồi và tải ảnh"):
|
170 |
-
# if correct_color and st.session_state.uploaded_image:
|
171 |
-
# # Save the image temporarily
|
172 |
-
# temp_image_path = f"temp_image_{hash(uploaded_file.name)}.png"
|
173 |
-
# st.session_state.uploaded_image.save(temp_image_path)
|
174 |
-
|
175 |
-
# # Upload to Mega.nz
|
176 |
-
# upload_result = upload_to_mega(temp_image_path, correct_color)
|
177 |
-
# if "Upload thành công" in upload_result:
|
178 |
-
# st.success(upload_result)
|
179 |
-
# else:
|
180 |
-
# st.error(upload_result)
|
181 |
-
|
182 |
-
# # Clean up temporary file
|
183 |
-
# os.remove(temp_image_path)
|
184 |
-
# else:
|
185 |
-
# st.warning("Vui lòng nhập màu sắc chính xác")
|
186 |
-
|
187 |
-
st.markdown("</div>", unsafe_allow_html=True)
|
188 |
else:
|
189 |
-
st.info("Upload an image to see the
|
190 |
-
|
|
|
191 |
st.markdown("---")
|
192 |
st.markdown("Made with ❤️ using Streamlit")
|
193 |
|
|
|
3 |
import numpy as np
|
4 |
import cv2
|
5 |
from PIL import Image
|
|
|
|
|
|
|
|
|
6 |
import io
|
|
|
7 |
|
8 |
# Set page config
|
9 |
st.set_page_config(
|
|
|
12 |
layout="wide"
|
13 |
)
|
14 |
|
15 |
+
# Custom CSS to improve the appearance
|
16 |
st.markdown("""
|
17 |
<style>
|
18 |
.main {
|
|
|
22 |
width: 100%;
|
23 |
margin-top: 1rem;
|
24 |
}
|
25 |
+
.upload-text {
|
26 |
+
text-align: center;
|
27 |
+
padding: 2rem;
|
28 |
+
}
|
29 |
.prediction-card {
|
30 |
padding: 2rem;
|
31 |
border-radius: 0.5rem;
|
32 |
+
background-color: #f0f2f6;
|
33 |
margin: 1rem 0;
|
34 |
}
|
35 |
.top-predictions {
|
|
|
39 |
border-radius: 0.5rem;
|
40 |
box-shadow: 0 1px 3px rgba(0,0,0,0.12);
|
41 |
}
|
42 |
+
.prediction-bar {
|
43 |
+
display: flex;
|
44 |
+
align-items: center;
|
45 |
+
margin: 0.5rem 0;
|
46 |
+
}
|
47 |
+
.prediction-label {
|
48 |
+
width: 100px;
|
49 |
+
font-weight: 500;
|
50 |
}
|
51 |
</style>
|
52 |
""", unsafe_allow_html=True)
|
53 |
|
54 |
+
@st.cache_resource
|
55 |
+
def load_model():
|
56 |
+
"""Load the trained model"""
|
57 |
+
return tf.keras.models.load_model('custom_model.h5')
|
58 |
+
|
59 |
+
def preprocess_image(image):
|
60 |
+
"""Preprocess the uploaded image"""
|
61 |
+
# # Convert to RGB if needed
|
62 |
+
# if image.mode != 'RGB':
|
63 |
+
# image = image.convert('RGB')
|
64 |
+
|
65 |
+
# Convert to numpy array
|
66 |
+
img_array = np.array(image)
|
67 |
+
|
68 |
+
# # Convert to RGB if needed
|
69 |
+
# if len(img_array.shape) == 2: # Grayscale
|
70 |
+
# img_array = cv2.cvtColor(img_array, cv2.COLOR_GRAY2RGB)
|
71 |
+
# elif img_array.shape[2] == 4: # RGBA
|
72 |
+
# img_array = cv2.cvtColor(img_array, cv2.COLOR_RGBA2RGB)
|
73 |
+
|
74 |
+
# # Preprocess image similar to training
|
75 |
+
# img_hsv = cv2.cvtColor(img_array, cv2.COLOR_RGB2HSV)
|
76 |
+
# img_hsv[:, :, 2] = cv2.equalizeHist(img_hsv[:, :, 2])
|
77 |
+
# img_array = cv2.cvtColor(img_hsv, cv2.COLOR_HSV2RGB)
|
78 |
+
|
79 |
+
# # Adjust brightness
|
80 |
+
# target_brightness = 150
|
81 |
+
# current_brightness = np.mean(img_array)
|
82 |
+
# alpha = target_brightness / (current_brightness + 1e-5)
|
83 |
+
# img_array = cv2.convertScaleAbs(img_array, alpha=alpha, beta=0)
|
84 |
+
|
85 |
+
# # Apply Gaussian blur
|
86 |
+
# img_array = cv2.GaussianBlur(img_array, (5, 5), 0)
|
87 |
+
|
88 |
+
# Resize
|
89 |
+
img_array = cv2.resize(img_array, (256, 256))
|
90 |
+
|
91 |
+
# Normalize
|
92 |
+
img_array = img_array.astype('float32') / 255.0
|
93 |
+
|
94 |
+
return img_array
|
95 |
+
|
96 |
+
def get_top_predictions(prediction, class_names, top_k=5):
|
97 |
+
"""Get top k predictions with their probabilities"""
|
98 |
+
# Get indices of top k predictions
|
99 |
+
top_indices = prediction.argsort()[0][-top_k:][::-1]
|
100 |
+
|
101 |
+
# Get corresponding class names and probabilities
|
102 |
+
top_predictions = [
|
103 |
+
(class_names[i], float(prediction[0][i]) * 100)
|
104 |
+
for i in top_indices
|
105 |
+
]
|
106 |
+
|
107 |
+
return top_predictions
|
108 |
|
109 |
def main():
|
110 |
+
# Title
|
111 |
st.title("🪨 Stone Classification")
|
112 |
st.write("Upload an image of a stone to classify its type")
|
113 |
+
|
114 |
+
# Initialize session state for prediction if not exists
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
if 'predictions' not in st.session_state:
|
116 |
st.session_state.predictions = None
|
117 |
+
|
118 |
+
# Create two columns
|
|
|
119 |
col1, col2 = st.columns(2)
|
120 |
+
|
121 |
with col1:
|
122 |
st.subheader("Upload Image")
|
123 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
124 |
+
|
125 |
if uploaded_file is not None:
|
126 |
+
# Display uploaded image
|
127 |
+
image = Image.open(uploaded_file)
|
128 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
129 |
+
|
130 |
+
with st.spinner('Analyzing image...'):
|
131 |
+
try:
|
132 |
+
# Load model
|
133 |
+
model = load_model()
|
134 |
+
|
135 |
+
# Preprocess image
|
136 |
+
processed_image = preprocess_image(image)
|
137 |
+
|
138 |
+
# Make prediction
|
139 |
+
prediction = model.predict(np.expand_dims(processed_image, axis=0))
|
140 |
class_names = ['10', '6.5', '7', '7.5', '8', '8.5', '9', '9.2', '9.5', '9.7']
|
141 |
+
|
142 |
+
# Get top 5 predictions
|
143 |
+
top_predictions = get_top_predictions(prediction, class_names)
|
144 |
+
|
145 |
+
# Store in session state
|
146 |
+
st.session_state.predictions = top_predictions
|
147 |
+
|
148 |
+
except Exception as e:
|
149 |
+
st.error(f"Error during prediction: {str(e)}")
|
150 |
+
|
151 |
with col2:
|
152 |
st.subheader("Prediction Results")
|
153 |
+
if st.session_state.predictions is not None:
|
154 |
+
# Create a card-like container for results
|
155 |
+
results_container = st.container()
|
156 |
+
with results_container:
|
157 |
+
# Display main prediction
|
158 |
+
st.markdown("<div class='prediction-card'>", unsafe_allow_html=True)
|
159 |
+
top_class, top_confidence = st.session_state.predictions[0]
|
160 |
+
st.markdown(f"### Primary Prediction: Grade {top_class}")
|
161 |
+
st.markdown(f"### Confidence: {top_confidence:.2f}%")
|
162 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
163 |
+
|
164 |
+
# Display confidence bar for top prediction
|
165 |
+
st.progress(top_confidence / 100)
|
166 |
+
|
167 |
+
# Display top 5 predictions
|
168 |
+
st.markdown("### Top 5 Predictions")
|
169 |
+
st.markdown("<div class='top-predictions'>", unsafe_allow_html=True)
|
170 |
+
|
171 |
+
# Create a Streamlit container for the predictions
|
172 |
+
for class_name, confidence in st.session_state.predictions:
|
173 |
+
col_label, col_bar, col_value = st.columns([2, 6, 2])
|
174 |
+
with col_label:
|
175 |
+
st.write(f"Grade {class_name}")
|
176 |
+
with col_bar:
|
177 |
+
st.progress(confidence / 100)
|
178 |
+
with col_value:
|
179 |
+
st.write(f"{confidence:.2f}%")
|
180 |
+
|
181 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
else:
|
183 |
+
st.info("Upload an image and click 'Predict' to see the results")
|
184 |
+
|
185 |
+
# Footer
|
186 |
st.markdown("---")
|
187 |
st.markdown("Made with ❤️ using Streamlit")
|
188 |
|