Update app.py
Browse files
app.py
CHANGED
@@ -19,6 +19,94 @@ class BasicAgent:
|
|
19 |
print(f"Agent returning fixed answer: {fixed_answer}")
|
20 |
return fixed_answer
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
23 |
"""
|
24 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
@@ -40,7 +128,19 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
40 |
|
41 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
42 |
try:
|
43 |
-
agent =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
except Exception as e:
|
45 |
print(f"Error instantiating agent: {e}")
|
46 |
return f"Error initializing agent: {e}", None
|
|
|
19 |
print(f"Agent returning fixed answer: {fixed_answer}")
|
20 |
return fixed_answer
|
21 |
|
22 |
+
from smolagents import ToolCallingAgent, InferenceClientModel()
|
23 |
+
from smolagents.tools import DuckDuckGoSearchResults
|
24 |
+
|
25 |
+
from smolagents import Tool
|
26 |
+
from smolagents.tools import DuckDuckGoSearchResults
|
27 |
+
from smolagents.models import InferenceClientModel
|
28 |
+
from smolagents import CodeAgent
|
29 |
+
|
30 |
+
class WebSearchTool(Tool):
|
31 |
+
def __init__(self):
|
32 |
+
self.agent = CodeAgent(
|
33 |
+
tools=[DuckDuckGoSearchResults()],
|
34 |
+
model=InferenceClientModel("deepseek-ai/DeepSeek-R1"),
|
35 |
+
name="WebSearcher",
|
36 |
+
description="Uses DuckDuckGo to answer queries with live web results.",
|
37 |
+
max_steps=5
|
38 |
+
)
|
39 |
+
|
40 |
+
def __call__(self, query: str) -> str:
|
41 |
+
try:
|
42 |
+
result = self.agent(query)
|
43 |
+
return result.get("output", "No response.")
|
44 |
+
except Exception as e:
|
45 |
+
return f"Web search failed: {e}"
|
46 |
+
|
47 |
+
class VideoAnalyzerTool(Tool):
|
48 |
+
def __init__(self):
|
49 |
+
self.image_classifier = ImageClassifierTool()
|
50 |
+
|
51 |
+
def __call__(self, video_path: str) -> str:
|
52 |
+
cap = cv2.VideoCapture(video_path)
|
53 |
+
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
54 |
+
labels = set()
|
55 |
+
|
56 |
+
for i in range(0, frame_count, max(1, frame_count // 5)):
|
57 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
58 |
+
ret, frame = cap.read()
|
59 |
+
if not ret:
|
60 |
+
continue
|
61 |
+
frame_path = f"temp_frame.jpg"
|
62 |
+
cv2.imwrite(frame_path, frame)
|
63 |
+
try:
|
64 |
+
label = self.image_classifier(frame_path)
|
65 |
+
labels.add(label)
|
66 |
+
except Exception as e:
|
67 |
+
labels.add(f"Error processing frame: {e}")
|
68 |
+
os.remove(frame_path)
|
69 |
+
|
70 |
+
cap.release()
|
71 |
+
return f"Video contains: {', '.join(labels)}"
|
72 |
+
|
73 |
+
from smolagents import CodeAgent, Tool
|
74 |
+
from PIL import Image
|
75 |
+
import torch
|
76 |
+
import torchvision.transforms as transforms
|
77 |
+
from transformers import ViTForImageClassification, ViTFeatureExtractor
|
78 |
+
import cv2
|
79 |
+
import os
|
80 |
+
|
81 |
+
class ImageClassifierTool(Tool):
|
82 |
+
def __init__(self):
|
83 |
+
self.model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224")
|
84 |
+
self.feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
|
85 |
+
self.transform = transforms.Compose([
|
86 |
+
transforms.Resize((224, 224)),
|
87 |
+
transforms.ToTensor()
|
88 |
+
])
|
89 |
+
self.id2label = self.model.config.id2label
|
90 |
+
|
91 |
+
def __call__(self, image_path: str) -> str:
|
92 |
+
image = Image.open(image_path).convert("RGB")
|
93 |
+
inputs = self.feature_extractor(images=image, return_tensors="pt")
|
94 |
+
with torch.no_grad():
|
95 |
+
outputs = self.model(**inputs)
|
96 |
+
logits = outputs.logits
|
97 |
+
predicted_class_idx = logits.argmax(-1).item()
|
98 |
+
return f"Predicted label: {self.id2label[predicted_class_idx]}"
|
99 |
+
|
100 |
+
class TimezoneTool(Tool):
|
101 |
+
name = "timezone_tool"
|
102 |
+
description = "Returns the current time for a given city."
|
103 |
+
|
104 |
+
def __call__(self, city: str) -> str:
|
105 |
+
url = f"http://worldtimeapi.org/api/timezone"
|
106 |
+
response = requests.get(url).json()
|
107 |
+
# You'd want to match city to a timezone
|
108 |
+
return "It's 9:45 AM in Tokyo."
|
109 |
+
|
110 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
111 |
"""
|
112 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
|
|
128 |
|
129 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
130 |
try:
|
131 |
+
agent = CodeAgent(
|
132 |
+
tools=[
|
133 |
+
ImageClassifierTool(),
|
134 |
+
VideoAnalyzerTool(),
|
135 |
+
TimezoneTool(),
|
136 |
+
WebSearchTool(), # Now a Tool, so it can be integrated!
|
137 |
+
],
|
138 |
+
model=InferenceClientModel("HuggingFaceH4/zephyr-7b-beta"),
|
139 |
+
max_steps=5,
|
140 |
+
name="web/media-agent",
|
141 |
+
description="An intelligent assistant that can classify images, summarize videos, check timezones, and search the web in real time."
|
142 |
+
)
|
143 |
+
|
144 |
except Exception as e:
|
145 |
print(f"Error instantiating agent: {e}")
|
146 |
return f"Error initializing agent: {e}", None
|