Update app.py
Browse files
app.py
CHANGED
@@ -1,142 +1,171 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
|
|
4 |
import pandas as pd
|
5 |
import asyncio
|
6 |
-
import
|
|
|
7 |
from huggingface_hub import login
|
8 |
-
from smolagents import CodeAgent, InferenceClientModel, DuckDuckGoSearchTool
|
9 |
|
10 |
-
# --- Constants ---
|
11 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
12 |
-
QUESTIONS_URL = f"{DEFAULT_API_URL}/questions"
|
13 |
-
SUBMIT_URL = f"{DEFAULT_API_URL}/submit"
|
14 |
|
15 |
-
# --- Hugging Face Login ---
|
16 |
login(token=os.environ["HUGGINGFACEHUB_API_TOKEN"])
|
17 |
|
18 |
-
# --- Define Tools ---
|
19 |
search_tool = DuckDuckGoSearchTool()
|
20 |
|
21 |
-
# --- Main Async Function with Progress Logs ---
|
22 |
async def run_and_submit_all(profile: gr.OAuthProfile | None):
|
23 |
log_output = ""
|
|
|
24 |
try:
|
25 |
agent = CodeAgent(
|
26 |
tools=[search_tool],
|
27 |
model=InferenceClientModel(model="mistralai/Magistral-Small-2506"),
|
28 |
max_steps=5,
|
29 |
-
verbosity_level=2
|
30 |
)
|
31 |
except Exception as e:
|
32 |
-
yield f"
|
33 |
return
|
34 |
|
35 |
-
space_id = os.getenv("SPACE_ID"
|
36 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
37 |
|
|
|
38 |
try:
|
39 |
-
response = requests.get(
|
40 |
response.raise_for_status()
|
41 |
-
|
42 |
-
if not
|
43 |
-
yield "
|
44 |
return
|
45 |
except Exception as e:
|
46 |
-
yield f"
|
47 |
return
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
loop = asyncio.
|
52 |
|
53 |
-
for item in
|
54 |
task_id = item.get("task_id")
|
55 |
-
|
56 |
-
if not task_id or
|
57 |
continue
|
58 |
|
59 |
log_output += f"π Solving Task ID: {task_id}...\n"
|
60 |
-
yield None, None, log_output
|
61 |
-
|
62 |
-
system_prompt = (
|
63 |
-
"You are a general AI assistant. I will ask you a question. "
|
64 |
-
"Report your thoughts, and finish your answer with the following template: "
|
65 |
-
"FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.\n\n"
|
66 |
-
)
|
67 |
-
full_prompt = system_prompt + f"Question: {question.strip()}"
|
68 |
|
69 |
try:
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
else:
|
78 |
-
final_answer =
|
79 |
else:
|
80 |
-
final_answer = str(
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
90 |
|
91 |
-
|
|
|
92 |
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
return
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
"answers": valid_answers
|
101 |
-
}
|
102 |
-
|
103 |
-
print("[DEBUG] Submitting:\n", json.dumps(submission, indent=2))
|
104 |
-
|
105 |
try:
|
106 |
-
|
107 |
-
|
108 |
-
result_data =
|
109 |
-
|
110 |
-
|
111 |
-
f"β
Submission Successful\n"
|
112 |
f"User: {result_data.get('username')}\n"
|
113 |
-
f"Score: {result_data.get('score', 'N/A')}% "
|
114 |
-
f"({result_data.get('correct_count')}/{result_data.get('total_attempted')})\n"
|
115 |
-
f"Message: {result_data.get('message', 'No message.')}"
|
116 |
)
|
117 |
-
|
118 |
-
|
119 |
except Exception as e:
|
120 |
-
|
|
|
|
|
121 |
|
122 |
-
# --- Gradio UI ---
|
123 |
with gr.Blocks() as demo:
|
124 |
-
gr.Markdown("#
|
125 |
gr.Markdown("""
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
|
|
129 |
""")
|
130 |
|
131 |
gr.LoginButton()
|
132 |
-
run_button = gr.Button("π Run Evaluation & Submit")
|
133 |
-
status = gr.Textbox(label="Final Status", lines=6)
|
134 |
-
table = gr.DataFrame(label="Answer Log")
|
135 |
-
progress_log = gr.Textbox(label="Live Progress Log", lines=10, interactive=False)
|
136 |
|
137 |
-
run_button.
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
# --- Launch ---
|
140 |
if __name__ == "__main__":
|
141 |
-
print("
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
+
import inspect
|
5 |
import pandas as pd
|
6 |
import asyncio
|
7 |
+
from smolagents import ToolCallingAgent, InferenceClientModel, HfApiModel
|
8 |
+
from smolagents import DuckDuckGoSearchTool, Tool, CodeAgent
|
9 |
from huggingface_hub import login
|
|
|
10 |
|
|
|
11 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
|
|
12 |
|
|
|
13 |
login(token=os.environ["HUGGINGFACEHUB_API_TOKEN"])
|
14 |
|
|
|
15 |
search_tool = DuckDuckGoSearchTool()
|
16 |
|
|
|
17 |
async def run_and_submit_all(profile: gr.OAuthProfile | None):
|
18 |
log_output = ""
|
19 |
+
|
20 |
try:
|
21 |
agent = CodeAgent(
|
22 |
tools=[search_tool],
|
23 |
model=InferenceClientModel(model="mistralai/Magistral-Small-2506"),
|
24 |
max_steps=5,
|
25 |
+
verbosity_level=2
|
26 |
)
|
27 |
except Exception as e:
|
28 |
+
yield f"Error initializing agent: {e}", None, log_output
|
29 |
return
|
30 |
|
31 |
+
space_id = os.getenv("SPACE_ID")
|
32 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
33 |
|
34 |
+
questions_url = f"{DEFAULT_API_URL}/questions"
|
35 |
try:
|
36 |
+
response = requests.get(questions_url, timeout=15)
|
37 |
response.raise_for_status()
|
38 |
+
questions_data = response.json()
|
39 |
+
if not questions_data:
|
40 |
+
yield "Fetched questions list is empty or invalid format.", None, log_output
|
41 |
return
|
42 |
except Exception as e:
|
43 |
+
yield f"Error fetching questions: {e}", None, log_output
|
44 |
return
|
45 |
|
46 |
+
results_log = []
|
47 |
+
answers_payload = []
|
48 |
+
loop = asyncio.get_event_loop()
|
49 |
|
50 |
+
for item in questions_data:
|
51 |
task_id = item.get("task_id")
|
52 |
+
question_text = item.get("question")
|
53 |
+
if not task_id or question_text is None:
|
54 |
continue
|
55 |
|
56 |
log_output += f"π Solving Task ID: {task_id}...\n"
|
57 |
+
yield None, None, log_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
try:
|
60 |
+
system_prompt = (
|
61 |
+
"You are a general AI assistant. I will ask you a question. "
|
62 |
+
"Report your thoughts, and finish your answer with the following template: "
|
63 |
+
"FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. "
|
64 |
+
"If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. "
|
65 |
+
"If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. "
|
66 |
+
"If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.\n\n"
|
67 |
+
)
|
68 |
+
full_prompt = system_prompt + f"Question: {question_text.strip()}"
|
69 |
+
|
70 |
+
agent_result = await loop.run_in_executor(None, agent, full_prompt)
|
71 |
+
|
72 |
+
# Extract final answer cleanly
|
73 |
+
if isinstance(agent_result, dict) and "final_answer" in agent_result:
|
74 |
+
final_answer = str(agent_result["final_answer"]).strip()
|
75 |
+
elif isinstance(agent_result, str):
|
76 |
+
response_text = agent_result.strip()
|
77 |
+
|
78 |
+
# Remove known boilerplate
|
79 |
+
if "Here is the final answer from your managed agent" in response_text:
|
80 |
+
response_text = response_text.split(":", 1)[-1].strip()
|
81 |
+
|
82 |
+
if "FINAL ANSWER:" in response_text:
|
83 |
+
_, final_answer = response_text.rsplit("FINAL ANSWER:", 1)
|
84 |
+
final_answer = final_answer.strip()
|
85 |
else:
|
86 |
+
final_answer = response_text
|
87 |
else:
|
88 |
+
final_answer = str(agent_result).strip()
|
89 |
|
90 |
+
answers_payload.append({
|
91 |
+
"task_id": task_id,
|
92 |
+
"model_answer": final_answer
|
93 |
+
})
|
94 |
|
95 |
+
results_log.append({
|
96 |
+
"Task ID": task_id,
|
97 |
+
"Question": question_text,
|
98 |
+
"Submitted Answer": final_answer
|
99 |
+
})
|
100 |
|
101 |
+
log_output += f"β
Done: {task_id} β Answer: {final_answer[:60]}\n"
|
102 |
+
yield None, None, log_output
|
103 |
|
104 |
+
except Exception as e:
|
105 |
+
print(f"Error running agent on task {task_id}: {e}")
|
106 |
+
results_log.append({
|
107 |
+
"Task ID": task_id,
|
108 |
+
"Question": question_text,
|
109 |
+
"Submitted Answer": f"AGENT ERROR: {e}"
|
110 |
+
})
|
111 |
+
log_output += f"βοΈ Error: {task_id} β {e}\n"
|
112 |
+
yield None, None, log_output
|
113 |
+
|
114 |
+
if not answers_payload:
|
115 |
+
yield "Agent did not produce any answers to submit.", pd.DataFrame(results_log), log_output
|
116 |
return
|
117 |
|
118 |
+
username = profile.username if profile else "unknown"
|
119 |
+
submit_url = f"{DEFAULT_API_URL}/submit"
|
120 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
|
|
|
|
|
|
|
|
|
|
121 |
try:
|
122 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
123 |
+
response.raise_for_status()
|
124 |
+
result_data = response.json()
|
125 |
+
final_status = (
|
126 |
+
f"Submission Successful!\n"
|
|
|
127 |
f"User: {result_data.get('username')}\n"
|
128 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
129 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
130 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
131 |
)
|
132 |
+
results_df = pd.DataFrame(results_log)
|
133 |
+
yield final_status, results_df, log_output
|
134 |
except Exception as e:
|
135 |
+
status_message = f"Submission Failed: {e}"
|
136 |
+
results_df = pd.DataFrame(results_log)
|
137 |
+
yield status_message, results_df, log_output
|
138 |
|
|
|
139 |
with gr.Blocks() as demo:
|
140 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
141 |
gr.Markdown("""
|
142 |
+
**Instructions:**
|
143 |
+
1. Clone this space and define your agent logic.
|
144 |
+
2. Log in to your Hugging Face account.
|
145 |
+
3. Click 'Run Evaluation & Submit All Answers'.
|
146 |
+
---
|
147 |
+
**Note:**
|
148 |
+
The run may take time. Async is now used to improve responsiveness.
|
149 |
""")
|
150 |
|
151 |
gr.LoginButton()
|
|
|
|
|
|
|
|
|
152 |
|
153 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
154 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
155 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
156 |
+
progress_log = gr.Textbox(label="Progress Log", lines=10, interactive=False)
|
157 |
+
|
158 |
+
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table, progress_log])
|
159 |
|
|
|
160 |
if __name__ == "__main__":
|
161 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
162 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
163 |
+
space_id_startup = os.getenv("SPACE_ID")
|
164 |
+
|
165 |
+
if space_host_startup:
|
166 |
+
print(f"β
SPACE_HOST: https://{space_host_startup}.hf.space")
|
167 |
+
if space_id_startup:
|
168 |
+
print(f"β
SPACE_ID: https://huggingface.co/spaces/{space_id_startup}")
|
169 |
+
|
170 |
+
print("Launching Gradio Interface...")
|
171 |
+
demo.launch(debug=True, share=False)
|