Sonu313131 commited on
Commit
c43e884
·
verified ·
1 Parent(s): e7545b5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -125
app.py CHANGED
@@ -3,44 +3,18 @@ import gradio as gr
3
  import requests
4
  import inspect
5
  import pandas as pd
6
- #hi
7
  from smolagents import ToolCallingAgent, InferenceClientModel, HfApiModel
8
- from smolagents import DuckDuckGoSearchTool
9
-
10
- from smolagents import Tool
11
- from smolagents import DuckDuckGoSearchTool
12
- from smolagents.models import InferenceClientModel
13
- from smolagents import CodeAgent
14
 
15
- # (Keep Constants as is)
16
- # --- Constants ---
17
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
18
 
19
- # --- Basic Agent Definition ---
20
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
21
- class BasicAgent:
22
- def __init__(self):
23
- print("BasicAgent initialized.")
24
-
25
- def __call__(self, question: str) -> str:
26
- print(f"Agent received question (first 50 chars): {question[:50]}...")
27
- fixed_answer = "This is a default answer."
28
- print(f"Agent returning fixed answer: {fixed_answer}")
29
- return fixed_answer
30
-
31
-
32
-
33
- from huggingface_hub import login
34
- import os
35
  login(token=os.environ["HUGGINGFACEHUB_API_TOKEN"])
36
 
37
  search_tool = DuckDuckGoSearchTool()
38
- def run_and_submit_all(profile: gr.OAuthProfile | None):
39
- """
40
- Fetches all questions, runs the BasicAgent on them, submits all answers.
41
- """
42
 
43
- # 1. Instantiate Agent (modify this part to create your agent)
44
  try:
45
  agent = CodeAgent(
46
  tools=[search_tool],
@@ -49,66 +23,42 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
49
  verbosity_level=2
50
  )
51
  except Exception as e:
52
- print(f"Error instantiating agent: {e}")
53
  return f"Error initializing agent: {e}", None
54
 
55
- # In the case of an app running as a Hugging Face space, this link points to your codebase
56
  space_id = os.getenv("SPACE_ID")
57
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
58
- print(agent_code)
59
 
60
- # 2. Fetch Questions
61
- api_url = DEFAULT_API_URL
62
- questions_url = f"{api_url}/questions"
63
- print(f"Fetching questions from: {questions_url}")
64
  try:
65
  response = requests.get(questions_url, timeout=15)
66
  response.raise_for_status()
67
  questions_data = response.json()
68
  if not questions_data:
69
- print("Fetched questions list is empty.")
70
  return "Fetched questions list is empty or invalid format.", None
71
- print(f"Fetched {len(questions_data)} questions.")
72
- except requests.exceptions.RequestException as e:
73
- print(f"Error fetching questions: {e}")
74
- return f"Error fetching questions: {e}", None
75
- except requests.exceptions.JSONDecodeError as e:
76
- print(f"Error decoding JSON response from questions endpoint: {e}")
77
- print(f"Response text: {response.text[:500]}")
78
- return f"Error decoding server response for questions: {e}", None
79
  except Exception as e:
80
- print(f"An unexpected error occurred fetching questions: {e}")
81
- return f"An unexpected error occurred fetching questions: {e}", None
82
 
83
- # 3. Run your Agent
84
  results_log = []
85
  answers_payload = []
86
- print(f"Running agent on {len(questions_data)} questions...")
87
  for item in questions_data:
88
  task_id = item.get("task_id")
89
  question_text = item.get("question")
90
  if not task_id or question_text is None:
91
- print(f"Skipping item with missing task_id or question: {item}")
92
  continue
93
  try:
94
- submitted_answer = agent(question_text)
 
95
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
96
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
97
  except Exception as e:
98
- print(f"Error running agent on task {task_id}: {e}")
99
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
100
 
101
  if not answers_payload:
102
- print("Agent did not produce any answers to submit.")
103
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
104
 
105
- # 4. Prepare Submission
 
106
  submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
107
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
108
- print(status_update)
109
-
110
- # 5. Submit
111
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
112
  try:
113
  response = requests.post(submit_url, json=submission_data, timeout=60)
114
  response.raise_for_status()
@@ -120,88 +70,42 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
120
  f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
121
  f"Message: {result_data.get('message', 'No message received.')}"
122
  )
123
- print("Submission successful.")
124
  results_df = pd.DataFrame(results_log)
125
  return final_status, results_df
126
- except requests.exceptions.HTTPError as e:
127
- error_detail = f"Server responded with status {e.response.status_code}."
128
- try:
129
- error_json = e.response.json()
130
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
131
- except requests.exceptions.JSONDecodeError:
132
- error_detail += f" Response: {e.response.text[:500]}"
133
- status_message = f"Submission Failed: {error_detail}"
134
- print(status_message)
135
- results_df = pd.DataFrame(results_log)
136
- return status_message, results_df
137
- except requests.exceptions.Timeout:
138
- status_message = "Submission Failed: The request timed out."
139
- print(status_message)
140
- results_df = pd.DataFrame(results_log)
141
- return status_message, results_df
142
- except requests.exceptions.RequestException as e:
143
- status_message = f"Submission Failed: Network error - {e}"
144
- print(status_message)
145
- results_df = pd.DataFrame(results_log)
146
- return status_message, results_df
147
  except Exception as e:
148
- status_message = f"An unexpected error occurred during submission: {e}"
149
- print(status_message)
150
  results_df = pd.DataFrame(results_log)
151
  return status_message, results_df
152
 
153
-
154
- # --- Build Gradio Interface using Blocks ---
155
  with gr.Blocks() as demo:
156
  gr.Markdown("# Basic Agent Evaluation Runner")
157
- gr.Markdown(
158
- """
159
- **Instructions:**
160
-
161
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
162
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
163
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
164
-
165
- ---
166
- **Disclaimers:**
167
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
168
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
169
- """
170
- )
171
 
172
  gr.LoginButton()
173
 
174
  run_button = gr.Button("Run Evaluation & Submit All Answers")
175
-
176
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
177
- # Removed max_rows=10 from DataFrame constructor
178
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
179
 
180
- run_button.click(
181
- fn=run_and_submit_all,
182
- outputs=[status_output, results_table]
183
- )
184
 
185
  if __name__ == "__main__":
186
  print("\n" + "-"*30 + " App Starting " + "-"*30)
187
- # Check for SPACE_HOST and SPACE_ID at startup for information
188
  space_host_startup = os.getenv("SPACE_HOST")
189
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
190
 
191
  if space_host_startup:
192
- print(f"✅ SPACE_HOST found: {space_host_startup}")
193
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
194
- else:
195
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
196
-
197
- if space_id_startup: # Print repo URLs if SPACE_ID is found
198
- print(f"✅ SPACE_ID found: {space_id_startup}")
199
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
200
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
201
- else:
202
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
203
-
204
- print("-"*(60 + len(" App Starting ")) + "\n")
205
-
206
- print("Launching Gradio Interface for Basic Agent Evaluation...")
207
- demo.launch(debug=True, share=False)
 
3
  import requests
4
  import inspect
5
  import pandas as pd
6
+ import asyncio
7
  from smolagents import ToolCallingAgent, InferenceClientModel, HfApiModel
8
+ from smolagents import DuckDuckGoSearchTool, Tool, CodeAgent
9
+ from huggingface_hub import login
 
 
 
 
10
 
 
 
11
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  login(token=os.environ["HUGGINGFACEHUB_API_TOKEN"])
14
 
15
  search_tool = DuckDuckGoSearchTool()
 
 
 
 
16
 
17
+ async def run_and_submit_all(profile: gr.OAuthProfile | None):
18
  try:
19
  agent = CodeAgent(
20
  tools=[search_tool],
 
23
  verbosity_level=2
24
  )
25
  except Exception as e:
 
26
  return f"Error initializing agent: {e}", None
27
 
 
28
  space_id = os.getenv("SPACE_ID")
29
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
 
30
 
31
+ questions_url = f"{DEFAULT_API_URL}/questions"
 
 
 
32
  try:
33
  response = requests.get(questions_url, timeout=15)
34
  response.raise_for_status()
35
  questions_data = response.json()
36
  if not questions_data:
 
37
  return "Fetched questions list is empty or invalid format.", None
 
 
 
 
 
 
 
 
38
  except Exception as e:
39
+ return f"Error fetching questions: {e}", None
 
40
 
 
41
  results_log = []
42
  answers_payload = []
 
43
  for item in questions_data:
44
  task_id = item.get("task_id")
45
  question_text = item.get("question")
46
  if not task_id or question_text is None:
 
47
  continue
48
  try:
49
+ loop = asyncio.get_event_loop()
50
+ submitted_answer = await loop.run_in_executor(None, agent, question_text)
51
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
52
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
53
  except Exception as e:
54
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
 
55
 
56
  if not answers_payload:
 
57
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
58
 
59
+ username = profile.username if profile else "unknown"
60
+ submit_url = f"{DEFAULT_API_URL}/submit"
61
  submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
 
 
 
 
 
62
  try:
63
  response = requests.post(submit_url, json=submission_data, timeout=60)
64
  response.raise_for_status()
 
70
  f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
71
  f"Message: {result_data.get('message', 'No message received.')}"
72
  )
 
73
  results_df = pd.DataFrame(results_log)
74
  return final_status, results_df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
  except Exception as e:
76
+ status_message = f"Submission Failed: {e}"
 
77
  results_df = pd.DataFrame(results_log)
78
  return status_message, results_df
79
 
 
 
80
  with gr.Blocks() as demo:
81
  gr.Markdown("# Basic Agent Evaluation Runner")
82
+ gr.Markdown("""
83
+ **Instructions:**
84
+ 1. Clone this space and define your agent logic.
85
+ 2. Log in to your Hugging Face account.
86
+ 3. Click 'Run Evaluation & Submit All Answers'.
87
+ ---
88
+ **Note:**
89
+ The run may take time. Async is now used to improve responsiveness.
90
+ """)
 
 
 
 
 
91
 
92
  gr.LoginButton()
93
 
94
  run_button = gr.Button("Run Evaluation & Submit All Answers")
 
95
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
96
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
97
 
98
+ run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
 
 
 
99
 
100
  if __name__ == "__main__":
101
  print("\n" + "-"*30 + " App Starting " + "-"*30)
 
102
  space_host_startup = os.getenv("SPACE_HOST")
103
+ space_id_startup = os.getenv("SPACE_ID")
104
 
105
  if space_host_startup:
106
+ print(f"✅ SPACE_HOST: https://{space_host_startup}.hf.space")
107
+ if space_id_startup:
108
+ print(f"✅ SPACE_ID: https://huggingface.co/spaces/{space_id_startup}")
109
+
110
+ print("Launching Gradio Interface...")
111
+ demo.launch(debug=True, share=False)