import os import gradio as gr import requests import pandas as pd import asyncio import json import concurrent.futures from huggingface_hub import login from smolagents import CodeAgent, InferenceClientModel, DuckDuckGoSearchTool # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" QUESTIONS_URL = f"{DEFAULT_API_URL}/questions" SUBMIT_URL = f"{DEFAULT_API_URL}/submit" # --- Hugging Face Login --- login(token=os.environ["HUGGINGFACEHUB_API_TOKEN"]) # --- Define Tools --- search_tool = DuckDuckGoSearchTool() # --- Main Function --- async def run_and_submit_all(profile: gr.OAuthProfile | None): # Initialize Agent try: agent = CodeAgent( tools=[search_tool], model=InferenceClientModel(model="mistralai/Magistral-Small-2506"), max_steps=5, verbosity_level=2 ) except Exception as e: return f"Error initializing agent: {e}", None # Get Space ID for agent_code link space_id = os.getenv("SPACE_ID", "unknown") agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" # Fetch questions try: response = requests.get(QUESTIONS_URL, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: return "No questions received.", None except Exception as e: return f"Error fetching questions: {e}", None # Prepare results answers_payload = [] results_log = [] loop = asyncio.get_event_loop() for item in questions_data: task_id = item.get("task_id") question = item.get("question") if not task_id or not question: continue system_prompt = ( "You are a general AI assistant. I will ask you a question. " "Report your thoughts, and finish your answer with the following template: " "FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. " "If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. " "If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. " "If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.\n\n" ) prompt = system_prompt + f"Question: {question.strip()}" # Run agent with timeout try: with concurrent.futures.ThreadPoolExecutor() as executor: future = executor.submit(agent, prompt) agent_result = await loop.run_in_executor(None, future.result, 60) # timeout=60s # Clean model output if isinstance(agent_result, dict) and "final_answer" in agent_result: final_answer = str(agent_result["final_answer"]).strip() elif isinstance(agent_result, str): response_text = agent_result.strip() # Remove known boilerplate if "Here is the final answer from your managed agent" in response_text: response_text = response_text.split(":", 1)[-1].strip() # Extract final answer if "FINAL ANSWER:" in response_text: _, final_answer = response_text.rsplit("FINAL ANSWER:", 1) final_answer = final_answer.strip() else: final_answer = response_text else: final_answer = str(agent_result).strip() except Exception as e: print(f"[ERROR] Task {task_id} failed: {e}") final_answer = f"AGENT ERROR: {e}" answers_payload.append({"task_id": task_id, "model_answer": final_answer}) results_log.append({"Task ID": task_id, "Question": question, "Submitted Answer": final_answer}) # Clean invalid entries valid_answers = [a for a in answers_payload if isinstance(a["task_id"], str) and isinstance(a["model_answer"], str)] if not valid_answers: return "Agent produced no valid answers.", pd.DataFrame(results_log) # Prepare submission username = profile.username if profile else "unknown" submission_data = { "username": username.strip(), "agent_code": agent_code, "answers": valid_answers } print("[DEBUG] Submission Payload:\n", json.dumps(submission_data, indent=2)) try: response = requests.post(SUBMIT_URL, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"✅ Submission Successful\n" f"User: {result_data.get('username')}\n" f"Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count')}/{result_data.get('total_attempted')})\n" f"Message: {result_data.get('message', 'No message.')}" ) return final_status, pd.DataFrame(results_log) except Exception as e: return f"Submission Failed: {e}", pd.DataFrame(results_log) # --- Gradio UI --- with gr.Blocks() as demo: gr.Markdown("# Agent Evaluation Interface") gr.Markdown(""" **Instructions:** 1. Clone and customize the agent logic. 2. Log in to Hugging Face. 3. Click "Run Evaluation" to test and submit your answers. """) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Status", lines=5, interactive=False) results_table = gr.DataFrame(label="Agent Answers", wrap=True) run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) # --- App Launch --- if __name__ == "__main__": print("\n--- Launching Gradio Space ---") print(f"✅ SPACE_HOST: {os.getenv('SPACE_HOST')}") print(f"✅ SPACE_ID: {os.getenv('SPACE_ID')}") demo.launch(debug=True, share=False)