Upload the app.py
Browse files
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import clip
|
3 |
+
from PIL import Image
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
# Load model
|
7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
+
model, preprocess = clip.load("ViT-B/32", device=device)
|
9 |
+
|
10 |
+
# Load normal class image embeddings
|
11 |
+
# For real use, you should create multiple embeddings and average them
|
12 |
+
normal_image = preprocess(Image.open("normal_sample.jpg")).unsqueeze(0).to(device)
|
13 |
+
with torch.no_grad():
|
14 |
+
normal_embedding = model.encode_image(normal_image)
|
15 |
+
normal_embedding /= normal_embedding.norm()
|
16 |
+
|
17 |
+
def detect_anomaly(img):
|
18 |
+
img = preprocess(img).unsqueeze(0).to(device)
|
19 |
+
with torch.no_grad():
|
20 |
+
test_embedding = model.encode_image(img)
|
21 |
+
test_embedding /= test_embedding.norm()
|
22 |
+
similarity = (test_embedding @ normal_embedding.T).item()
|
23 |
+
|
24 |
+
if similarity < 0.8: # example threshold
|
25 |
+
result = "Anomaly Detected"
|
26 |
+
else:
|
27 |
+
result = "Normal"
|
28 |
+
return f"Similarity: {similarity:.2f} | {result}"
|
29 |
+
|
30 |
+
gr.Interface(fn=detect_anomaly,
|
31 |
+
inputs=gr.Image(),
|
32 |
+
outputs="text").launch()
|