Add the code to app file
Browse files
app.py
CHANGED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModel, AutoImageProcessor
|
3 |
+
from PIL import Image
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
+
|
8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
|
10 |
+
# Load DINOv2 model
|
11 |
+
model_name = "facebook/dinov2-base"
|
12 |
+
model = AutoModel.from_pretrained(model_name).to(device)
|
13 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
14 |
+
|
15 |
+
# Load OK reference image (built-in normal)
|
16 |
+
ok_image = Image.open("https://huggingface.co/datasets/Soooma/sofc/OK1.jpg")
|
17 |
+
|
18 |
+
# Precompute OK feature embedding
|
19 |
+
with torch.no_grad():
|
20 |
+
ok_input = processor(images=ok_image, return_tensors="pt").to(device)
|
21 |
+
ok_feat = model(**ok_input).last_hidden_state.mean(dim=1)
|
22 |
+
ok_feat = ok_feat.cpu().numpy()
|
23 |
+
|
24 |
+
def detect_anomaly(image):
|
25 |
+
if image is None:
|
26 |
+
return "No image uploaded."
|
27 |
+
|
28 |
+
with torch.no_grad():
|
29 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
30 |
+
feat = model(**inputs).last_hidden_state.mean(dim=1)
|
31 |
+
feat = feat.cpu().numpy()
|
32 |
+
|
33 |
+
similarity = cosine_similarity(feat, ok_feat)[0][0]
|
34 |
+
|
35 |
+
if similarity < 0.90:
|
36 |
+
return f"Anomaly Detected | Similarity: {similarity:.3f}"
|
37 |
+
else:
|
38 |
+
return f"Normal | Similarity: {similarity:.3f}"
|
39 |
+
|
40 |
+
gr.Interface(
|
41 |
+
fn=detect_anomaly,
|
42 |
+
inputs=gr.Image(type="pil"),
|
43 |
+
outputs="text",
|
44 |
+
title="Anomaly Detector (DINOv2)",
|
45 |
+
description="Upload an image of a stack. The model compares it to a known OK sample using DINOv2 features."
|
46 |
+
).launch()
|