Soooma commited on
Commit
39b6238
·
1 Parent(s): 8f15649

demo for titles generation

Browse files
Files changed (1) hide show
  1. app.py +22 -0
app.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
4
+ import nltk
5
+ nltk.download('punkt')
6
+
7
+ tokenizer = AutoTokenizer.from_pretrained("fabiochiu/t5-small-medium-title-generation")
8
+ model = AutoModelForSeq2SeqLM.from_pretrained("fabiochiu/t5-small-medium-title-generation")
9
+
10
+ text = st.text_area('Enter an abstract to summerize, i.e. generate a title!')
11
+
12
+
13
+ if text:
14
+ inputs = ["summarize: " + text]
15
+ inputs = tokenizer(inputs, max_length=max_input_length, truncation=True, return_tensors="pt")
16
+ output = model.generate(**inputs, num_beams=8, do_sample=True, min_length=10, max_length=64)
17
+ decoded_output = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
18
+ predicted_title = nltk.sent_tokenize(decoded_output.strip())[0]
19
+
20
+ html_string = f"<h3>{predicted_title}</h3>"
21
+
22
+ st.markdown(html_string, unsafe_allow_html=True)