Spaces:
Runtime error
Runtime error
File size: 1,242 Bytes
a214965 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import streamlit as st
from flask import Flask, request, render_template, redirect
from transformers import BartTokenizer, BartForConditionalGeneration
# preprocess input
# return input_ids matrix
tokenizer = BartTokenizer.from_pretrained("sshleifer/distilbart-cnn-6-6")
model = BartForConditionalGeneration.from_pretrained("sshleifer/distilbart-cnn-6-6")
def preprocess(inp):
input_ids = tokenizer(inp, return_tensors="pt").input_ids
return input_ids
def predict(input_ids):
outputs = model.generate(input_ids=input_ids)
res = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
return res
@app.route('/', methods=['POST', 'GET'])
def index():
if request.method == 'POST':
inp = request.form['content']
inp_ids = preprocess(inp)
summary = predict(inp_ids)
return render_template('index.html', summary=summary)
else:
print("GETTING get")
return render_template('index.html', summary="Nothing to summarize")
if __name__ == '__main__':
st.title("Text summary with fine-tuned Pegasus model")
with st.container():
txt = st.text_area('Text to analyze', ' ')
inp_ids = preprocess(txt)
st.write('Summary:', predict(inp_ids))
|