Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
# preprocess input | |
# return input_ids matrix | |
tokenizer = AutoTokenizer.from_pretrained("SophieTr/fine-tune-Pegasus") | |
model = AutoModelForSeq2SeqLM.from_pretrained("SophieTr/fine-tune-Pegasus") | |
def preprocess(inp): | |
input_ids = tokenizer(inp, return_tensors="pt").input_ids | |
return input_ids | |
def predict(input_ids): | |
outputs = model.generate(input_ids=input_ids) | |
res = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] | |
return res | |
def index(): | |
if request.method == 'POST': | |
inp = request.form['content'] | |
inp_ids = preprocess(inp) | |
summary = predict(inp_ids) | |
return render_template('index.html', summary=summary) | |
else: | |
print("GETTING get") | |
return render_template('index.html', summary="Nothing to summarize") | |
if __name__ == '__main__': | |
st.title("Text summary with fine-tuned Pegasus model") | |
with st.container(): | |
txt = st.text_area('Text to analyze', ' ') | |
inp_ids = preprocess(txt) | |
st.write('Summary:', predict(inp_ids)) | |