File size: 8,232 Bytes
64e81a6
eebb5f5
4bc692b
64e81a6
 
 
 
 
 
 
 
 
 
4bc692b
088c633
64e81a6
acf601d
eebb5f5
088c633
64e81a6
 
4bc692b
64e81a6
088c633
64e81a6
 
 
 
 
 
 
 
4bc692b
088c633
 
eebb5f5
64e81a6
 
 
 
 
088c633
 
64e81a6
 
eebb5f5
4bc692b
64e81a6
 
088c633
 
 
 
 
 
 
 
 
 
4bc692b
 
 
 
 
 
 
 
 
 
 
 
 
af300e8
7d6b9a9
4bc692b
 
 
 
64e81a6
4bc692b
 
64e81a6
 
 
 
4bc692b
64e81a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c32f512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64e81a6
c32f512
 
 
64e81a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d2a8d3
 
64e81a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760eded
64e81a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
from torchvision import models, transforms
import torch.nn as nn
import os
import json
import cv2
from PIL import Image
import gradio as gr

class MultimodalRiskBehaviorModel(nn.Module):
    def __init__(self, text_model_name="bert-base-uncased", hidden_dim=512, dropout=0.3):
        super(MultimodalRiskBehaviorModel, self).__init__()

        # Text model using AutoModelForSequenceClassification
        self.text_model_name = text_model_name
        self.text_model = AutoModelForSequenceClassification.from_pretrained(text_model_name, num_labels=2)
        
        # Visual model (ResNet50)
        self.visual_model = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
        visual_feature_dim = self.visual_model.fc.in_features
        self.visual_model.fc = nn.Identity()

        # Fusion and classification layer setup
        text_feature_dim = self.text_model.config.hidden_size
        self.fc1 = nn.Linear(text_feature_dim + visual_feature_dim, hidden_dim)
        self.dropout = nn.Dropout(dropout)
        self.fc2 = nn.Linear(hidden_dim, 1)

    def forward(self, encoding, frames):
        input_ids = encoding['input_ids'].squeeze(1).to(device)
        attention_mask = encoding['attention_mask'].squeeze(1).to(device)

        # Extract text and visual features
        text_features = self.text_model(input_ids=input_ids, attention_mask=attention_mask).logits
        frames = frames.to(device)
        
        batch_size, num_frames, channels, height, width = frames.size()
        frames = frames.view(batch_size * num_frames, channels, height, width)
        visual_features = self.visual_model(frames)
        visual_features = visual_features.view(batch_size, num_frames, -1).mean(dim=1)

        # Combine and classify
        combined_features = torch.cat((text_features, visual_features), dim=1)
        x = self.dropout(torch.relu(self.fc1(combined_features)))
        output = torch.sigmoid(self.fc2(x))

        return output

    def save_pretrained(self, save_directory):
        os.makedirs(save_directory, exist_ok=True)
        torch.save(self.state_dict(), os.path.join(save_directory, 'pytorch_model.bin'))
        config = {
            "text_model_name": self.text_model_name,
            "hidden_dim": self.fc1.out_features
        }
        with open(os.path.join(save_directory, 'config.json'), 'w') as f:
            json.dump(config, f)

    @classmethod
    def from_pretrained(cls, load_directory, map_location=None):
        if os.path.exists(load_directory):
            config_path = os.path.join(load_directory, 'config.json')
            state_dict_path = os.path.join(load_directory, 'pytorch_model.bin')

            with open(config_path, 'r') as f:
                config_dict = json.load(f)
            model = cls(text_model_name=config_dict["text_model_name"], hidden_dim=config_dict["hidden_dim"])
            state_dict = torch.load(state_dict_path, map_location=map_location)
            model.load_state_dict(state_dict)
        
        else:
            hf_model = AutoModelForSequenceClassification.from_pretrained(load_directory, num_labels=2)
            model = cls(text_model_name=hf_model.config.name_or_path, hidden_dim=hf_model.config.hidden_size)
            model.text_model = hf_model

        return model

tokenizer = AutoTokenizer.from_pretrained('Souha-BH/BERT_Resnet50')
model = MultimodalRiskBehaviorModel.from_pretrained('Souha-BH/BERT_Resnet50') # if cpu add arg map_location='cpu'

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)



# Function to load frames from a video
def load_frames_from_video(video_path, transform, num_frames=10):
    cap = cv2.VideoCapture(video_path)
    frames = []
    frame_count = 0
    while frame_count < num_frames:  # Limit to a number of frames for efficiency
        success, frame = cap.read()
        if not success:
            break
        # Convert frame (NumPy array) to PIL image and apply transformations
        frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
        frame = transform(frame)
        frames.append(frame)
        frame_count += 1
    cap.release()

    # Stack frames and add batch dimension (1, num_frames, channels, height, width)
    frames = torch.stack(frames)
    frames = frames.unsqueeze(0)  # Add batch dimension
    return frames

def predict_video(model, video_path, text_input, tokenizer, transform):
    try:
        # Set model to evaluation mode
        model.eval()
        
        # Tokenize the text input
        encoding = tokenizer(
            text_input, padding='max_length', truncation=True, max_length=128, return_tensors='pt'
        )
        encoding = {key: val.to(device) for key, val in encoding.items()}
        
        # Load frames from the video
        frames = load_frames_from_video(video_path, transform)
        frames = frames.to(device)
        
        # Log input shapes and devices
        print(f"Encoding device: {next(iter(encoding.values())).device}, Frames shape: {frames.shape}")
        
        # Perform forward pass through the model
        with torch.no_grad():
            output = model(encoding, frames)
        
        # Apply sigmoid to get probability, then threshold to get prediction
        prediction = (output.squeeze(-1) > 0.5).float()
        
        return prediction.item()
    
    except Exception as e:
        print(f"Prediction error: {e}")
        return "Error during prediction"




transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])


# Define your video paths and captions
video_paths = [
    'https://drive.google.com/uc?export=download&id=1iWq1q1LM-jmf4iZxOqZTw4FaIBekJowM',
    'https://drive.google.com/uc?export=download&id=1_egBaC1HD2kIZgRRKsnCtsWG94vg1c7n',
    'https://drive.google.com/uc?export=download&id=12cGxBEkfU5Q1Ezg2jRk6zGyn2hoR3JLj'
]

video_captions = [
    "Everytime i start a diet  ูƒู„ ู…ุฑุฉ ุฃุญุงูˆู„ ุฃุจุฏุฃ ุฑูŠุฌูŠู… ๐Ÿ˜“ #dietmemes #funnyvideos #animetiktok",
    "New sandwich from burger king ๐Ÿ”๐Ÿ‘‘ #mukbang #asmr #asmrmukbang #asmrsounds #eat #food #Foodie moe eats #yummy #cheese #chicken #burger #fries #burgerking @Burger King",
    "all workout guides l!nked in bi0 // honestly huge moment ๐Ÿ˜‚ Iโ€™ve been so focused on growing my upper body that this feels like it finally shows! shorts from @KEEPTHATPUMP #upperbody #upperbodyworkout #glutegains #glutegrowth #gluteexercise #workout #strengthtraining #gym #trending #fyp"
]


def predict_risk(video_index):
    video_path = video_paths[video_index]
    text_input = video_captions[video_index]
    
    # Make prediction
    prediction = predict_video(model, video_path, text_input, tokenizer, transform)
    
    # Return the corresponding label
    if prediction == "Error during prediction":
        return "Error during prediction"
    return "Risky Health Behavior" if prediction == 1 else "Not Risky Health Behavior"

# Interface setup
with gr.Blocks() as interface:
    gr.Markdown("# Risk Behavior Prediction")
    gr.Markdown("Select a video to classify its behavior as risky or not.")
    
    # Input option selector
    video_selector = gr.Radio(["Video 1", "Video 2", "Video 3"], label="Choose a Video")

    # Use function to return URLs which are handled by the Gradio `gr.Video` component
    def show_selected_video(choice):
        idx = int(choice.split()[-1]) - 1
        return video_paths[idx], f"**Caption:** {video_captions[idx]}"

    video_player = gr.Video(width=320, height=240)
    caption_box = gr.Markdown()

    video_selector.change(
        fn=show_selected_video,
        inputs=video_selector,
        outputs=[video_player, caption_box]
    )
    
    # Prediction button and output
    predict_button = gr.Button("Predict Risk")
    output_text = gr.Textbox(label="Prediction")

    predict_button.click(
        fn=lambda idx: predict_risk(int(idx.split()[-1]) - 1),
        inputs=video_selector,
        outputs=output_text
    )

# Launch the app
interface.launch()