SoulPerforms commited on
Commit
8db7130
·
verified ·
1 Parent(s): 8efe5fd

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -0
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """app.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1WeNkl1pYnT0qeOTsUFooLFLJ1arRHC00
8
+ """
9
+
10
+ # %pip install ultralytics -q
11
+ # %pip install gradio -q
12
+
13
+ import cv2
14
+ import os
15
+ import PIL.Image as Image
16
+ import gradio as gr
17
+ from huggingface_hub import hf_hub_download
18
+ from ultralytics import ASSETS, YOLO
19
+
20
+ # load trained model
21
+ model = YOLO("best.pt")
22
+
23
+ def predict_image(img, conf_threshold, iou_threshold):
24
+ results = model.predict(
25
+ source=img,
26
+ conf=conf_threshold,
27
+ iou=iou_threshold,
28
+ show_labels=True,
29
+ show_conf=True,
30
+ imgsz=640,
31
+ )
32
+
33
+ for r in results:
34
+ im_array = r.plot()
35
+ im = Image.fromarray(im_array[..., ::-1])
36
+
37
+ return im
38
+
39
+
40
+ iface = gr.Interface(
41
+ fn=predict_image,
42
+ inputs=[
43
+ gr.Image(type="pil", label="Upload Image"),
44
+ gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
45
+ gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold")
46
+ ],
47
+ outputs=gr.Image(type="pil", label="Result"),
48
+ title="Fire Detecttion using YOLOv8n on Gradio",
49
+ description="Upload images for inference. The Ultralytics YOLOv8n trained model is used for inference.",
50
+ examples=[
51
+ [ASSETS / "bus.jpg", 0.25, 0.45],
52
+ [ASSETS / "zidane.jpg", 0.25, 0.45],
53
+ ]
54
+ )
55
+
56
+ if __name__ == '__main__':
57
+ iface.launch()