Update app.py
Browse files
app.py
CHANGED
@@ -62,18 +62,21 @@ def read_pdf(file):
|
|
62 |
# # Display the extracted text
|
63 |
# #st.text(extracted_text)
|
64 |
# return extracted_text
|
65 |
-
|
66 |
-
|
67 |
-
def engsum(text):
|
68 |
tokenizer = AutoTokenizer.from_pretrained('t5-base')
|
69 |
model = AutoModelWithLMHead.from_pretrained('t5-base', return_dict=True)
|
|
|
|
|
|
|
|
|
70 |
#st.text("Using Google T5 Transformer ..")
|
71 |
inputs = tokenizer.encode("summarize: " + text,return_tensors='pt',
|
72 |
max_length= 512,
|
73 |
truncation=True)
|
74 |
summary_ids = model.generate(inputs, max_length=150, min_length=80, length_penalty=5., num_beams=2)
|
75 |
summary = tokenizer.decode(summary_ids[0])
|
76 |
-
st.success(summary)
|
77 |
@st.cache(suppress_st_warning=True)
|
78 |
def bansum(text):
|
79 |
def query(payload):
|
|
|
62 |
# # Display the extracted text
|
63 |
# #st.text(extracted_text)
|
64 |
# return extracted_text
|
65 |
+
@st.cache
|
66 |
+
def l():
|
|
|
67 |
tokenizer = AutoTokenizer.from_pretrained('t5-base')
|
68 |
model = AutoModelWithLMHead.from_pretrained('t5-base', return_dict=True)
|
69 |
+
return tokenizer, model
|
70 |
+
@st.cache(suppress_st_warning=True)
|
71 |
+
def engsum(text):
|
72 |
+
tokenizer, model = l()
|
73 |
#st.text("Using Google T5 Transformer ..")
|
74 |
inputs = tokenizer.encode("summarize: " + text,return_tensors='pt',
|
75 |
max_length= 512,
|
76 |
truncation=True)
|
77 |
summary_ids = model.generate(inputs, max_length=150, min_length=80, length_penalty=5., num_beams=2)
|
78 |
summary = tokenizer.decode(summary_ids[0])
|
79 |
+
st.success(summary[5:-2])
|
80 |
@st.cache(suppress_st_warning=True)
|
81 |
def bansum(text):
|
82 |
def query(payload):
|