Soumen commited on
Commit
46e4c0f
·
1 Parent(s): cfab8ed

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -7
app.py CHANGED
@@ -73,11 +73,10 @@ def main():
73
  + This is a Natural Language Processing(NLP) Based App useful for basic NLP task
74
  NER,Sentiment, Spell Corrections and Summarization
75
  """)
 
76
  # Entity Extraction
77
  if st.checkbox("Show Named Entities"):
78
  st.subheader("Analyze Your Text")
79
-
80
- message = st.text_area("Enter your Text","Typing Here ..")
81
  if st.button("Extract"):
82
  entity_result = entity_analyzer(message)
83
  st.json(entity_result)
@@ -85,7 +84,6 @@ def main():
85
  # Sentiment Analysis
86
  elif st.checkbox("Show Sentiment Analysis"):
87
  st.subheader("Analyse Your Text")
88
- message = st.text_area("Enter Text plz, Type Here ...")
89
  if st.button("Analyze"):
90
  blob = TextBlob(message)
91
  result_sentiment = blob.sentiment
@@ -93,16 +91,14 @@ def main():
93
  #Text Corrections
94
  elif st.checkbox("Spell Corrections"):
95
  st.subheader("Correct Your Text")
96
- message = st.text_area("Enter the Text","Type please ..")
97
  if st.button("Spell Corrections"):
98
  st.text("Using TextBlob ..")
99
  st.success(TextBlob(message).correct())
100
  elif st.checkbox("Text Generation"):
101
  st.subheader("Generate Text")
102
- message = st.text_area("Enter the Text","Type please ..")
103
- tokenizer, model = load_models()
104
- input_ids = tokenizer(message, return_tensors='pt').input_ids
105
  if st.button("Generate"):
 
 
106
  st.text("Using Hugging Face Trnsformer, Contrastive Search ..")
107
  output = model.generate(input_ids, max_length=128)
108
  st.success(tokenizer.decode(output[0], skip_special_tokens=True))
 
73
  + This is a Natural Language Processing(NLP) Based App useful for basic NLP task
74
  NER,Sentiment, Spell Corrections and Summarization
75
  """)
76
+ message = st.text_area("Enter the Text","Type please ..")
77
  # Entity Extraction
78
  if st.checkbox("Show Named Entities"):
79
  st.subheader("Analyze Your Text")
 
 
80
  if st.button("Extract"):
81
  entity_result = entity_analyzer(message)
82
  st.json(entity_result)
 
84
  # Sentiment Analysis
85
  elif st.checkbox("Show Sentiment Analysis"):
86
  st.subheader("Analyse Your Text")
 
87
  if st.button("Analyze"):
88
  blob = TextBlob(message)
89
  result_sentiment = blob.sentiment
 
91
  #Text Corrections
92
  elif st.checkbox("Spell Corrections"):
93
  st.subheader("Correct Your Text")
 
94
  if st.button("Spell Corrections"):
95
  st.text("Using TextBlob ..")
96
  st.success(TextBlob(message).correct())
97
  elif st.checkbox("Text Generation"):
98
  st.subheader("Generate Text")
 
 
 
99
  if st.button("Generate"):
100
+ tokenizer, model = load_models()
101
+ input_ids = tokenizer(message, return_tensors='pt').input_ids
102
  st.text("Using Hugging Face Trnsformer, Contrastive Search ..")
103
  output = model.generate(input_ids, max_length=128)
104
  st.success(tokenizer.decode(output[0], skip_special_tokens=True))