Soumen commited on
Commit
9c37e72
·
1 Parent(s): 0553808

initial commit

Browse files
Files changed (5) hide show
  1. app.py +145 -0
  2. images.png +0 -0
  3. packages.txt +1 -0
  4. requirements.txt +16 -0
  5. scholarly_text.jpg +0 -0
app.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ ## App: NLP App with Streamlit
3
+ Credits: Streamlit Team,Marc Skov Madsen(For Awesome-streamlit gallery)
4
+ Description
5
+ This is a Natural Language Processing(NLP) Based App useful for basic NLP concepts such as follows;
6
+
7
+ + Tokenization & Lemmatization using Spacy
8
+
9
+ + Named Entity Recognition(NER) using SpaCy
10
+
11
+ + Sentiment Analysis using TextBlob
12
+
13
+ + Document/Text Summarization using Gensim/T5
14
+
15
+ This is built with Streamlit Framework, an awesome framework for building ML and NLP tools.
16
+ Purpose
17
+ To perform basic and useful NLP task with Streamlit, Spacy, Textblob and Gensim
18
+ """
19
+ # Core Pkgs
20
+ import streamlit as st
21
+ import os
22
+ import torch
23
+ from transformers import AutoTokenizer, AutoModelWithLMHead
24
+
25
+ # NLP Pkgs
26
+ from textblob import TextBlob
27
+ import spacy
28
+ from gensim.summarization import summarize
29
+ import requests
30
+ import cv2
31
+ import numpy as np
32
+ import pytesseract
33
+ pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
34
+ from PIL import Image
35
+ # Function to Analyse Tokens and Lemma
36
+ tokenizer = AutoTokenizer.from_pretrained('t5-base')
37
+ model = AutoModelWithLMHead.from_pretrained('t5-base', return_dict=True)
38
+ @st.cache
39
+ def text_analyzer(my_text):
40
+ nlp = spacy.load('en_core_web_sm')
41
+ docx = nlp(my_text)
42
+ # tokens = [ token.text for token in docx]
43
+ allData = [('"Token":{},\n"Lemma":{}'.format(token.text,token.lemma_))for token in docx ]
44
+ return allData
45
+
46
+ # Function For Extracting Entities
47
+ @st.cache
48
+ def entity_analyzer(my_text):
49
+ nlp = spacy.load('en_core_web_sm')
50
+ docx = nlp(my_text)
51
+ tokens = [ token.text for token in docx]
52
+ entities = [(entity.text,entity.label_)for entity in docx.ents]
53
+ allData = ['"Token":{},\n"Entities":{}'.format(tokens,entities)]
54
+ return allData
55
+
56
+
57
+ def main():
58
+ """ NLP Based App with Streamlit """
59
+
60
+ # Title
61
+ st.title("Streamlit NLP APP")
62
+ st.markdown("""
63
+ #### Description
64
+ + This is a Natural Language Processing(NLP) Based App useful for basic NLP task
65
+ NER,Sentiment, Spell Corrections and Summarization
66
+ """)
67
+
68
+
69
+ # Entity Extraction
70
+ if st.checkbox("Show Named Entities"):
71
+ st.subheader("Analyze Your Text")
72
+
73
+ message = st.text_area("Enter your Text","Typing Here ..")
74
+ if st.button("Extract"):
75
+ entity_result = entity_analyzer(message)
76
+ st.json(entity_result)
77
+
78
+ # Sentiment Analysis
79
+ elif st.checkbox("Show Sentiment Analysis"):
80
+ st.subheader("Analyse Your Text")
81
+ message = st.text_area("Enter Text plz","Type Here .")
82
+ if st.button("Analyze"):
83
+ blob = TextBlob(message)
84
+ result_sentiment = blob.sentiment
85
+ st.success(result_sentiment)
86
+ #Text Corrections
87
+ elif st.checkbox("Spell Corrections"):
88
+ st.subheader("Correct Your Text")
89
+ message = st.text_area("Enter the Text","Type please ..")
90
+ if st.button("Spell Corrections"):
91
+ st.text("Using TextBlob ..")
92
+ st.success(TextBlob(message).correct())
93
+ def change_photo_state():
94
+ st.session_state["photo"]="done"
95
+ st.subheader("Summary section, feed your image!")
96
+ camera_photo = st.camera_input("Take a photo", on_change=change_photo_state)
97
+ uploaded_photo = st.file_uploader("Upload Image",type=['jpg','png','jpeg'], on_change=change_photo_state)
98
+ message = st.text_input("Or, drop your text here!")
99
+ if "photo" not in st.session_state:
100
+ st.session_state["photo"]="not done"
101
+
102
+ if st.session_state["photo"]=="done" or message:
103
+ if uploaded_photo:
104
+ img = Image.open(uploaded_photo)
105
+ img = img.save("img.png")
106
+ img = cv2.imread("img.png")
107
+ text = pytesseract.image_to_string(img)
108
+ st.success(text)
109
+ if camera_photo:
110
+ img = Image.open(camera_photo)
111
+ img = img.save("img.png")
112
+ img = cv2.imread("img.png")
113
+ text = pytesseract.image_to_string(img)
114
+ st.success(text)
115
+ if uploaded_photo==None and camera_photo==None:
116
+ #our_image=load_image("image.jpg")
117
+ #img = cv2.imread("scholarly_text.jpg")
118
+ text = message
119
+ # Summarization
120
+ if st.checkbox("Show Text Summarization Genism"):
121
+ st.subheader("Summarize Your Text")
122
+ #message = st.text_area("Enter the Text","Type please ..")
123
+ st.text("Using Gensim Summarizer ..")
124
+ #st.success(mess)
125
+ summary_result = summarize(text)
126
+ st.success(summary_result)
127
+
128
+ elif st.checkbox("Show Text Summarization T5"):
129
+ st.subheader("Summarize Your Text")
130
+ #message = st.text_area("Enter the Text","Type please ..")
131
+ st.text("Using Google T5 Transformer ..")
132
+ inputs = tokenizer.encode("summarize: " + text,
133
+ return_tensors='pt',
134
+ max_length=512,
135
+ truncation=True)
136
+ summary_ids = model.generate(inputs, max_length=150, min_length=80, length_penalty=5., num_beams=2)
137
+ summary = tokenizer.decode(summary_ids[0])
138
+ st.success(summary)
139
+
140
+ st.sidebar.subheader("About App")
141
+ st.sidebar.subheader("By")
142
+ st.sidebar.text("Soumen Sarker")
143
+
144
+ if __name__ == '__main__':
145
+ main()
images.png ADDED
packages.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ tesseract-ocr-all
requirements.txt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ torch
2
+ transformers
3
+ nltk==3.6.5
4
+ wordnet
5
+ gensim==3.8.3
6
+ joblib==1.1.0
7
+ numpy==1.21.4
8
+ pandas==1.3.4
9
+ scikit-learn==1.0.1
10
+ spacy==3.2.0
11
+ streamlit==1.2.0
12
+ textblob==0.17.1
13
+ request
14
+ pytesseract
15
+ opencv-python
16
+ Pillow
scholarly_text.jpg ADDED