Soumen commited on
Commit
b330918
·
1 Parent(s): 50ae4e7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +110 -110
app.py CHANGED
@@ -82,123 +82,123 @@ def bansum(text):
82
  if isinstance(out, list) and out[0].get("summary_text"):
83
  text_output = out[0]["summary_text"]
84
  st.success(text_output)
85
-
 
 
 
86
  #@st.cache
87
  def main():
 
88
  import streamlit as st
89
- import time
90
- if st.checkbox("Summarize"):
91
- if "photo" not in st.session_state:
92
- st.session_state["photo"]="not done"
93
- def change_photo_state():
94
- st.session_state["photo"]="done"
95
  c1, c2, c3 = st.columns([2,2,1])
96
- with st.container():
97
- message = c1.text_input("Type your text here!")
98
- uploaded_photo=None
99
- camera_photo=None
100
- if c2.button("CaptureImage"):
101
- camera_photo = c2.camera_input("Capture a photo to summarize: ", on_change=change_photo_state)
102
- if c2.button("Stop camera"):
103
  CaptureImage =False
104
- uploaded_photo = c3.file_uploader("Upload your Images/PDF",type=['jpg','png','jpeg','pdf'], on_change=change_photo_state)
105
-
106
- if st.session_state["photo"]=="done" or message:
107
- if uploaded_photo and uploaded_photo.type=='application/pdf':
108
- tet = read_pdf(uploaded_photo)
109
- # with tempfile.NamedTemporaryFile(delete=False) as temp_file:
110
- # temp_file.write(uploaded_photo.read())
111
- # temp_file_path = temp_file.name
112
-
113
- # loader = PyPDFLoader(temp_file_path)
114
- # if loader:
115
- # text.extend(loader.load())
116
- # os.remove(temp_file_path)
117
- # text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=100, length_function=len)
118
- # text_chunks = text_splitter.split_documents(text)
119
- values = st.slider('Select a approximate number of lines to see and summarize',value=[0, len(tet)//(7*100)])
120
- text = tet[values[0]*7*10:values[1]*10*100] if values[0]!=len(tet)//(10*100) else tet[len(tet)//(10*100):]
121
- #st.success(type(text_chunks))
122
- if st.button("English Pdf Summarize"):
123
- st.subheader("Selected text for summarize: ")
124
- st.success(text)
125
- st.subheader("Summarized Text: ")
126
- engsum(text)
127
-
128
- elif uploaded_photo and uploaded_photo.type !='application/pdf':
129
- text=None
130
- img = Image.open(uploaded_photo)
131
- img = img.save("img.png")
132
- img = cv2.imread("img.png")
133
- st.text("Select the summarization type:")
134
- if st.button("BENGALI"):
135
- text = pytesseract.image_to_string(img, lang="ben")
136
- st.subheader("সারাংশ/সারমর্ম")
137
- bansum(text)
138
- if st.button("ENGLISH"):
139
- text=pytesseract.image_to_string(img)
140
- st.subheader("Summarized Text")
141
- engsum(text)
142
- #st.success(text)
143
- elif camera_photo:
144
- text=None
145
- img = Image.open(camera_photo)
146
- img = img.save("img.png")
147
- img = cv2.imread("img.png")
148
- #text = pytesseract.image_to_string(img) if st.checkbox("Bangla") else pytesseract.image_to_string(img, lang="ben")
149
- st.text("Select the summarization type:")
150
- if st.button("Bangla"):
151
- text = pytesseract.image_to_string(img, lang="ben")
152
- st.subheader("সারাংশ/সারমর্ম")
153
- bansum(text)
154
- if st.button("English"):
155
- text=pytesseract.image_to_string(img)
156
- st.subheader("Summarized Text")
157
- engsum(text)
158
- else:
159
- text=None
160
- text = message
161
- if st.button("Bangla"):
162
- bansum(text)
163
- if st.button("English"):
164
- engsum(text)
165
- if st.checkbox("Conversate"):
166
- Summarize=False
167
- with st.container():
168
- from streamlit_chat import message as st_message
169
- from transformers import BlenderbotTokenizer
170
- from transformers import BlenderbotForConditionalGeneration
171
- st.title("Chatbot!!!")
172
 
173
- @st.experimental_singleton
174
- def get_models():
175
- # it may be necessary for other frameworks to cache the model
176
- # seems pytorch keeps an internal state of the conversation
177
- model_name = "facebook/blenderbot-400M-distill"
178
- tokenizer = BlenderbotTokenizer.from_pretrained(model_name)
179
- model = BlenderbotForConditionalGeneration.from_pretrained(model_name)
180
- return tokenizer, model
181
- if "history" not in st.session_state:
182
- st.session_state.history = []
183
- def generate_answer():
184
- tokenizer, model = get_models()
185
- user_message = st.session_state.input_text
186
- inputs = tokenizer(st.session_state.input_text, return_tensors="pt")
187
- result = model.generate(**inputs)
188
- message_bot = tokenizer.decode(
189
- result[0], skip_special_tokens=True
190
- ) # .replace("<s>", "").replace("</s>", "")
191
- st.session_state.history.append({"message": user_message, "is_user": True})
192
- st.session_state.history.append({"message": message_bot, "is_user": False})
193
- from copyreg import clear_extension_cache
194
- for chat in st.session_state.history:
195
- st_message(**chat)
196
- st.text_input("Talk to the bot", key="input_text", on_change=generate_answer)
197
- if st.button("Refresh/New Chat"):
198
- st.session_state.history = []
199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200
 
201
-
202
-
203
  if __name__ == "__main__":
204
  main()
 
82
  if isinstance(out, list) and out[0].get("summary_text"):
83
  text_output = out[0]["summary_text"]
84
  st.success(text_output)
85
+
86
+ @st.cache
87
+ def save(l):
88
+ return l
89
  #@st.cache
90
  def main():
91
+ camera_photo=None
92
  import streamlit as st
93
+ if "photo" not in st.session_state:
94
+ st.session_state["photo"]="not done"
95
+ def change_photo_state():
96
+ st.session_state["photo"]="done"
97
+ with st.container():
 
98
  c1, c2, c3 = st.columns([2,2,1])
99
+ message = c1.text_input("Type your text here!")
100
+ if st.button("CaptureImage"):
101
+ camera_photo = c2.camera_input("Capture a photo to summarize: ", on_change=change_photo_state)
102
+ if st.button("Stop camera"):
 
 
 
103
  CaptureImage =False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
+ uploaded_photo = save(c3.file_uploader("Upload your Images/PDF",type=['jpg','png','jpeg','pdf'], on_change=change_photo_state))
106
+ if st.session_state["photo"]=="done" or message:
107
+ if uploaded_photo and uploaded_photo.type=='application/pdf':
108
+ tet = read_pdf(uploaded_photo)
109
+ # with tempfile.NamedTemporaryFile(delete=False) as temp_file:
110
+ # temp_file.write(uploaded_photo.read())
111
+ # temp_file_path = temp_file.name
112
+
113
+ # loader = PyPDFLoader(temp_file_path)
114
+ # if loader:
115
+ # text.extend(loader.load())
116
+ # os.remove(temp_file_path)
117
+ # text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=100, length_function=len)
118
+ # text_chunks = text_splitter.split_documents(text)
119
+ values = st.slider('Select a approximate number of lines to see and summarize',value=[0, len(tet)//(7*100)])
120
+ text = tet[values[0]*7*10:values[1]*10*100] if values[0]!=len(tet)//(10*100) else tet[len(tet)//(10*100):]
121
+ #st.success(type(text_chunks))
122
+ if st.button("English Pdf Summarize"):
123
+ st.subheader("Selected text for summarize: ")
124
+ st.success(text)
125
+ st.subheader("Summarized Text: ")
126
+ engsum(text)
 
 
 
 
127
 
128
+ elif uploaded_photo and uploaded_photo.type !='application/pdf':
129
+ text=None
130
+ img = Image.open(uploaded_photo)
131
+ img = img.save("img.png")
132
+ img = cv2.imread("img.png")
133
+ st.text("Select the summarization type:")
134
+ c4, c5 = st.columns([1,1])
135
+ if c4.button("BENGALI"):
136
+ text = pytesseract.image_to_string(img, lang="ben")
137
+ st.subheader("সারাংশ/সারমর্ম")
138
+ bansum(text)
139
+ if c5.button("ENGLISH"):
140
+ text=pytesseract.image_to_string(img)
141
+ st.subheader("Summarized Text")
142
+ engsum(text)
143
+ #st.success(text)
144
+ elif camera_photo:
145
+ text=None
146
+ img = Image.open(camera_photo)
147
+ img = img.save("img.png")
148
+ img = cv2.imread("img.png")
149
+ #text = pytesseract.image_to_string(img) if st.checkbox("Bangla") else pytesseract.image_to_string(img, lang="ben")
150
+ st.text("Select the summarization type:")
151
+ c6, c7 = st.columns([1,1])
152
+ if c6.button("Bangla"):
153
+ text = pytesseract.image_to_string(img, lang="ben")
154
+ st.subheader("সারাংশ/সারমর্ম")
155
+ bansum(text)
156
+ if c7.button("English"):
157
+ text=pytesseract.image_to_string(img)
158
+ st.subheader("Summarized Text")
159
+ engsum(text)
160
+ else:
161
+ text=None
162
+ text = message
163
+ c8, c9 = st.columns([1,1])
164
+ if c8.button("Bangla"):
165
+ bansum(text)
166
+ if c9.button("English"):
167
+ engsum(text)
168
+
169
+ with st.container():
170
+ from streamlit_chat import message as st_message
171
+ from transformers import BlenderbotTokenizer
172
+ from transformers import BlenderbotForConditionalGeneration
173
+ st.title("Chatbot!!!")
174
+
175
+ @st.experimental_singleton
176
+ def get_models():
177
+ # it may be necessary for other frameworks to cache the model
178
+ # seems pytorch keeps an internal state of the conversation
179
+ model_name = "facebook/blenderbot-400M-distill"
180
+ tokenizer = BlenderbotTokenizer.from_pretrained(model_name)
181
+ model = BlenderbotForConditionalGeneration.from_pretrained(model_name)
182
+ return tokenizer, model
183
+ if "history" not in st.session_state:
184
+ st.session_state.history = []
185
+ st.title("Hello bot: ")
186
+ def generate_answer():
187
+ tokenizer, model = get_models()
188
+ user_message = st.session_state.input_text
189
+ inputs = tokenizer(st.session_state.input_text, return_tensors="pt")
190
+ result = model.generate(**inputs)
191
+ message_bot = tokenizer.decode(
192
+ result[0], skip_special_tokens=True
193
+ ) # .replace("<s>", "").replace("</s>", "")
194
+ st.session_state.history.append({"message": user_message, "is_user": True})
195
+ st.session_state.history.append({"message": message_bot, "is_user": False})
196
+ st.text_input("Talk to the bot", key="input_text", on_change=generate_answer)
197
+ from copyreg import clear_extension_cache
198
+ for chat in st.session_state.history:
199
+ st_message(**chat)
200
+ if st.button("Refresh/New Chat"):
201
+ st.session_state.history = []
202
 
 
 
203
  if __name__ == "__main__":
204
  main()